如图, 中, , ,连接 ,分别以点 和点 为圆心,大于 的长为半径作弧,两弧相交于点 , ,作直线 ,交 于点 ,连接 ,则 的周长是 .
如图,点 是 的直径 延长线上的一点 ,点 是线段 的中点.
(1)尺规作图:在直径 上方的圆上作一点 ,使得 ,连接 , (保留清晰作图痕迹,不要求写作法);并证明 是 的切线;
(2)在(1)的条件下,若 , ,求 的长.
如图, ,以点 为圆心,以任意长为半径作弧交 , 于 , 两点;分别以 , 为圆心,以大于 的长为半径作弧,两弧相交于点 ;以 为端点作射线 ,在射线 上截取线段 ,则 点到 的距离为
A.6B.2C.3D.
已知: ,求作: 的平分线.作法:①以点 为圆心,适当长为半径画弧,分别交 , 于点 , ;②分别以点 , 为圆心,大于 的长为半径画弧,两弧在 内部交于点 ;③画射线 .射线 即为所求.上述作图用到了全等三角形的判定方法,这个方法是 .
如图,在矩形 中, , , 是 边上的一点,且 .
(1)用尺规在图①中作出 边上的中点 ,连接 、 (保留作图痕迹,不写作法);
(2)如图②,在(1)的条件下,判断 是否平分 ,并说明理由;
(3)如图③,在(2)的条件下,连接 并延长交 的延长线于点 ,连接 ,不添加辅助线, 能否由都经过 点的两次变换与 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)
如图,已知等腰 顶角 .
(1)在 上作一点 ,使 (要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加黑);
(2)求证: 是等腰三角形.
如图,在 中,尺规作图如下:分别以点 ,点 为圆心,大于 的长为半径作弧,两弧相交于 , 两点,作直线 ,交 于点 ,连接 ,则下列结论正确的是
A. 平分 B. 垂直平分 C. 垂直平分 D. 平分
阅读与思考
如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.
年 月 日星期日 没有直角尺也能作出直角 今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线 ,现根据木板的情况,要过 上的一点 ,作出 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢? 办法一:如图①,可利用一把有刻度的直尺在 上量出 ,然后分别以 , 为圆心,以 与 为半径画圆弧,两弧相交于点 ,作直线 ,则 必为 . 办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出 , 两点,然后把木棒斜放在木板上,使点 与点 重合,用铅笔在木板上将点 对应的位置标记为点 ,保持点 不动,将木棒绕点 旋转,使点 落在 上,在木板上将点 对应的位置标记为点 .然后将 延长,在延长线上截取线段 ,得到点 ,作直线 ,则 . 我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢? |
任务:
(1)填空:“办法一”依据的一个数学定理是 ;
(2)根据“办法二”的操作过程,证明 ;
(3)①尺规作图:请在图③的木板上,过点 作出 的垂线(在木板上保留作图痕迹,不写作法);
②说明你的作法所依据的数学定理或基本事实(写出一个即可).
如图,四边形 为平行四边形,连接 ,且 .请用尺规完成基本作图:作出 的角平分线与 交于点 .连接 交 于点 ,交 于点 ,猜想线段 和线段 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)
如图,已知在 中, , , 是 边上的中线.按下列步骤作图:①分别以点 , 为圆心,大于线段 长度一半的长为半径作弧,相交于点 , ;②过点 , 作直线 ,分别交 , 于点 , ;③连接 , .则下列结论错误的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, ,分别以点 , 为圆心,以大于 长为半径画弧,两弧交于点 , .作直线 ,交 于点 .分别以点 , 为圆心,以大于 长为半径画弧,两弧交于点 , .作直线 ,交 于点 .连接 , .若 ,则 .
如图,在 中, , , 垂直平分 ,垂足为 ,交 于点 .按以下步骤作图:①以点 为圆心,以适当的长为半径作弧,分别交边 , 于点 , ;②分别以点 , 为圆心,以大于 的长为半径作弧,两弧相交于点 ;③作射线 .若 与 的夹角为 ,则 .
如图,已知 是矩形 的对角线.
(1)用直尺和圆规作线段 的垂直平分线,分别交 、 于 、 (保留作图痕迹,不写作法和证明).
(2)连接 , ,问四边形 是什么四边形?请说明理由.
试题篮
()