在 中, .
(1)如图①,点 在斜边 上,以点 为圆心, 长为半径的圆交 于点 ,交 于点 ,与边 相切于点 .求证: ;
(2)在图②中作 ,使它满足以下条件:
①圆心在边 上;②经过点 ;③与边 相切.
(尺规作图,只保留作图痕迹,不要求写出作法)
如图,在 中,按以下步骤作图:①分别以点 和 为圆心,以大于 的长为半径作弧,两弧相交于点 和 ;②作直线 交 于点 ,连接 .若 , ,则 的长为
A.2B.3C.4D.6
如图,在 中, , ,分别以点 , 为圆心, 的长为半径作弧,两弧交于点 ,连接 , ,则四边形 的面积为
A. B.9C.6D.
如图,在 中, ,分别以点 , 为圆心,以大于 长为半径画弧,两弧交于点 , .作直线 ,交 于点 .分别以点 , 为圆心,以大于 长为半径画弧,两弧交于点 , .作直线 ,交 于点 .连接 , .若 ,则 .
如图,在 中,尺规作图如下:分别以点 ,点 为圆心,大于 的长为半径作弧,两弧相交于 , 两点,作直线 ,交 于点 ,连接 ,则下列结论正确的是
A. 平分 B. 垂直平分 C. 垂直平分 D. 平分
如图,在 中, ,以点 为圆心, 长为半径画弧,交 于点 和点 ,再分别以点 , 为圆心,大于 长为半径画弧,两弧相交于点 ,作射线 交 于点 .若 , ,则 的长度是
A.2B.3C. D.
如图,点 是 的直径 延长线上的一点 ,点 是线段 的中点.
(1)尺规作图:在直径 上方的圆上作一点 ,使得 ,连接 , (保留清晰作图痕迹,不要求写作法);并证明 是 的切线;
(2)在(1)的条件下,若 , ,求 的长.
已知 ,求作 ,作法:
(1)以 为圆心,任意长为半径画弧分别交 , 于点 , ;
(2)分别以 , 为圆心,以 长为半径在角的内部画弧交于点 ;
(3)作射线 ,则 为 的平分线,可得
根据以上作法,某同学有以下3种证明思路:
①可证明 ,得 ,可得;
②可证明四边形 为菱形, , 互相垂直平分,得 ,可得;
③可证明 为等边三角形, , 互相垂直平分,从而得 ,可得.
你认为该同学以上3种证明思路中,正确的有
A.①②B.①③C.②③D.①②③
如图,在 中, , , 垂直平分 ,垂足为 ,交 于点 .按以下步骤作图:①以点 为圆心,以适当的长为半径作弧,分别交边 , 于点 , ;②分别以点 , 为圆心,以大于 的长为半径作弧,两弧相交于点 ;③作射线 .若 与 的夹角为 ,则 .
如图,已知矩形 .
(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;
①以点 为圆心,以 的长为半径画弧交边 于点 ,连接 ;
②作 的平分线交 于点 ;
③连接 ;
(2)在(1)作出的图形中,若 , ,则 的值为 .
如图,在 中, ,以顶点 为圆心,适当长为半径画弧,分别交 , 于点 , ,再分别以点 , 为圆心,大于 的长为半径画弧,两弧交于点 ,作射线 交边 于点 ,若 , ,则 的面积是
A.15B.30C.45D.60
如图,在 中, , , ,以点 为圆心, 长为半径作弧,交 于点 ;再分别以点 和点 为圆心,大于 的长为半径作弧,两弧相交于点 ,作射线 交 于点 ,则 的长为
A.5B.6C.7D.8
如图,已知在 中, , , 是 边上的中线.按下列步骤作图:①分别以点 , 为圆心,大于线段 长度一半的长为半径作弧,相交于点 , ;②过点 , 作直线 ,分别交 , 于点 , ;③连接 , .则下列结论错误的是
A. |
|
B. |
|
C. |
|
D. |
|
试题篮
()