优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 轴对称-最短路线问题
初中数学

如图,在直角坐标系中,矩形 OABC 的顶点 O 在坐标原点,顶点 A C 分别在 x 轴, y 轴上, B D 两点坐标分别为 B ( 4 , 6 ) D ( 0 , 4 ) ,线段 EF 在边 OA 上移动,保持 EF = 3 ,当四边形 BDEF 的周长最小时,点 E 的坐标为   

来源:2021年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,直线 y = 1 2 x + 2 B C 两点,连接 AC

(1)求抛物线的解析式;

(2)求证: ΔAOC ΔACB

(3)点 M ( 3 , 2 ) 是抛物线上的一点,点 D 为抛物线上位于直线 BC 上方的一点,过点 D DE x 轴交直线 BC 于点 E ,点 P 为抛物线对称轴上一动点,当线段 DE 的长度最大时,求 PD + PM 的最小值.

来源:2021年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为8,点 M DC 上且 DM = 2 N AC 上的一动点,则 DN + MN 的最小值是   

来源:2021年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 2 x 3 x 轴交于 A B 两点(点 A 在点 B 的左侧)与 y 轴交于点 C ,点 D ( 4 , y ) 在抛物线上, E 是该抛物线对称轴上一动点,当 BE + DE 的值最小时, ΔACE 的面积为   

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = x 2 2 x 3 x 轴交于 A B 两点(点 A 在点 B 的左侧)与 y 轴交于点 C ,点 D ( 4 , y ) 在抛物线上, E 是该抛物线对称轴上一动点,当 BE + DE 的值最小时, ΔACE 的面积为   

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 题型:未知
  • 难度:未知

已知菱形 ABCD 的面积为 2 3 ,点 E 是一边 BC 上的中点,点 P 是对角线 BD 上的动点.连接 AE ,若 AE 平分 BAC ,则线段 PE PC 的和的最小值为   ,最大值为   

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, MON = 40 ° ,以 O 为圆心,4为半径作弧交 OM 于点 A ,交 ON 于点 B ,分别以点 A B 为圆心,大于 1 2 AB 的长为半径画弧,两弧在 MON 的内部相交于点 C ,画射线 OC AB ̂ 于点 D E OA 上一动点,连接 BE DE ,则阴影部分周长的最小值为   

来源:2021年辽宁省营口市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 内接于 O ,线段 MN 在对角线 BD 上运动,若 O 的面积为 2 π MN = 1 ,则 ΔAMN 周长的最小值是 (    )

A.

3

B.

4

C.

5

D.

6

来源:2021年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 的边长为1, ABC = 60 ° ,点 E 是边 AB 上任意一点(端点除外),线段 CE 的垂直平分线交 BD CE 分别于点 F G AE EF 的中点分别为 M N

(1)求证: AF = EF

(2)求 MN + NG 的最小值;

(3)当点 E AB 上运动时, CEF 的大小是否变化?为什么?

来源:2020年山东省临沂市中考数学试卷
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 C 的坐标为 ( 0 , - 3 ) .点 P 为抛物线 y = x 2 + bx + c 上的一个动点.过点 P PD x 轴于点 D ,交直线 BC 于点 E

(1)求 b c 的值;

(2)设点 F 在抛物线 y = x 2 + bx + c 的对称轴上,当 ΔACF 的周长最小时,直接写出点 F 的坐标;

(3)在第一象限,是否存在点 P ,使点 P 到直线 BC 的距离是点 D 到直线 BC 的距离的5倍?若存在,求出点 P 所有的坐标;若不存在,请说明理由.

来源:2020年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) ,经过点 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 3 ) 三点.

(1)求抛物线的解析式及顶点 M 的坐标;

(2)连接 AC BC N 为抛物线上的点且在第四象限,当 S ΔNBC = S ΔABC 时,求 N 点的坐标;

(3)在(2)问的条件下,过点 C 作直线 l / / x 轴,动点 P ( m , 3 ) 在直线 l 上,动点 Q ( m , 0 ) x 轴上,连接 PM PQ NQ ,当 m 为何值时, PM + PQ + QN 最小,并求出 PM + PQ + QN 的最小值.

来源:2017年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 3 , 0 ) .与 y 轴交于点 C ( 0 , 3 )

(1)求抛物线的解析式;

(2)点 P x 轴下方的抛物线上,过点 P 的直线 y = x + m 与直线 BC 交于点 E ,与 y 轴交于点 F ,求 PE + EF 的最大值;

(3)点 D 为抛物线对称轴上一点.

①当 ΔBCD 是以 BC 为直角边的直角三角形时,求点 D 的坐标;

②若 ΔBCD 是锐角三角形,求点 D 的纵坐标的取值范围.

来源:2017年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = a x 2 + bx + 3 x 轴交于点 A ( - 3 , 0 ) B ( 1 , 0 ) ,交 y 轴于点 N ,点 M 为抛物线的顶点,对称轴与 x 轴交于点 C

(1)求抛物线的解析式;

(2)如图1,连接 AM ,点 E 是线段 AM 上方抛物线上一动点, EF AM 于点 F ,过点 E EH x 轴于点 H ,交 AM 于点 D .点 P y 轴上一动点,当 EF 取最大值时:

①求 PD + PC 的最小值;

②如图2, Q 点为 y 轴上一动点,请直接写出 DQ + 1 4 OQ 的最小值.

来源:2020年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c 过点 A ( 3 , 0 ) B ( 2 , 3 ) C ( 0 , 3 ) ,其顶点为 D

(1)求抛物线的解析式;

(2)设点 M ( 1 , m ) ,当 MB + MD 的值最小时,求 m 的值;

(3)若 P 是抛物线上位于直线 AC 上方的一个动点,求 ΔAPC 的面积的最大值;

(4)若抛物线的对称轴与直线 AC 相交于点 N E 为直线 AC 上任意一点,过点 E EF / / ND 交抛物线于点 F ,以 N D E F 为顶点的四边形能否为平行四边形?若能,求点 E 的坐标;若不能,请说明理由.

来源:2017年四川省广元市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 5 ax + c 与坐标轴分别交于点 A C E 三点,其中 A ( 3 , 0 ) C ( 0 , 4 ) ,点 B x 轴上, AC = BC ,过点 B BD x 轴交抛物线于点 D ,点 M N 分别是线段 CO BC 上的动点,且 CM = BN ,连接 MN AM AN

(1)求抛物线的解析式及点 D 的坐标;

(2)当 ΔCMN 是直角三角形时,求点 M 的坐标;

(3)试求出 AM + AN 的最小值.

来源:2018年广西北海市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学轴对称-最短路线问题试题