如图1,在 中, 于点 , 的垂直平分线交 于点 ,交 于点 , , , .
(1)如图2,作 于点 ,交 于点 ,将 沿 方向平移,得到△ ,连接 .
①求四边形 的面积;
②直线 上有一动点 ,求 周长的最小值.
(2)如图3,延长 交 于点 ,过点 作 ,过 边上的动点 作 ,并与 交于点 ,将 沿直线 翻折,使点 的对应点 恰好落在直线 上,求线段 的长.
如图,将边长为6的正三角形纸片 按如下顺序进行两次折叠,展平后,得折痕 、 (如图①),点 为其交点.
(1)探求 与 的数量关系,并说明理由;
(2)如图②,若 , 分别为 , 上的动点.
①当 的长度取得最小值时,求 的长度;
②如图③,若点 在线段 上, ,则 的最小值 .
如图,在 中, , , 为 边的中点,以 为边作等边 ,连接 , .
(1)求证: ;
(2)若 ,在 边上找一点 ,使得 最小,并求出这个最小值.
如图,在正方形 中,点 , 分别是边 , 的中点,连接 ,过点 作 ,垂足为 , 的延长线交 于点 .
(1)猜想 与 的数量关系,并证明你的结论;
(2)过点 作 ,分别交 , 于点 , ,若正方形 的边长为10,点 是 上一点,求 周长的最小值.
平面直角坐标系 中,已知 、 、 三点, 是一个动点,当 的周长最小时, 的面积为
A. B. C. D.
如图,在平面直角坐标系中,点 , 分别在 轴、 轴上,四边形 是边长为4的正方形,点 为 的中点,点 为 上的一个动点,连接 , ,当点 满足 的值最小时,直线 的解析式为 .
如图,等腰 的底边 ,面积为120,点 在边 上,且 , 是腰 的垂直平分线,若点 在 上运动,则 周长的最小值为 .
在平面直角坐标系内有两点 、 ,其坐标为 , ,点 为 轴上的一个动点,若要使 的值最大,则点 的坐标为 .
如图,在 中, , , ,以点 为圆心,2为半径的圆与 交于点 ,过点 作 交 于点 ,点 是边 上的动点.当 最小时, 的长为
A. B. C.1D.
如图, ,点 是 内的定点且 ,若点 、 分别是射线 、 上异于点 的动点,则 周长的最小值是
A. B. C.6D.3
如图,直线 与 轴、 轴分别交于点 和点 ,点 、 分别为线段 、 的中点,点 为 上一动点,当 最小时,点 的坐标为
A. B. C. , D. ,
试题篮
()