优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 轴对称-最短路线问题
初中数学

如图,正方形 ABCD 的边长为4,点 P 是对角线 AC 上一动点,点 E 是边 BC 的中点,则 PB + PE 的最小值为  

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 题型:未知
  • 难度:未知

如图,已知正方形 ABCD 的边长是4,点 E AB 边上一动点,连接 CE ,过点 B BG CE 于点 G ,点 P AB 边上另一动点,则 PD + PG 的最小值为  

来源:2018年黑龙江省七台河市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 OABC 的两边 OC OA 分别在坐标轴上,且 OA = 2 OC = 4 ,连接 OB .反比例函数 y = k 1 x ( x > 0 ) 的图象经过线段 OB 的中点 D ,并与 AB BC 分别交于点 E F .一次函数 y = k 2 x + b 的图象经过 E F 两点.

(1)分别求出一次函数和反比例函数的表达式;

(2)点 P x 轴上一动点,当 PE + PF 的值最小时,点 P 的坐标为   

来源:2021年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

已知在 Rt Δ ACB 中, C = 90 ° ABC = 75 ° AB = 5 ,点 E 为边 AC 上的动点,点 F 为边 AB 上的动点,则线段 FE + EB 的最小值是 (    )

A.

5 3 2

B.

5 2

C.

5

D.

3

来源:2021年黑龙江省绥化市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 4 x + c ( a 0 ) 与反比例函数 y = 9 x 的图象相交于点 B ,且 B 点的横坐标为3,抛物线与 y 轴交于点 C ( 0 , 6 ) A 是抛物线 y = a x 2 4 x + c 的顶点, P 点是 x 轴上一动点,当 PA + PB 最小时, P 点的坐标为  

来源:2018年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知正方形 ABCD 的边长是4,点 E AB 边上一动点,连接 CE ,过点 B BG CE 于点 G ,点 P AB 边上另一动点,则 PD + PG 的最小值为  

来源:2018年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c 经过 A ( 1 , 0 ) B ( 3 , 0 ) 两点,交 y 轴于点 C ,点 D 为抛物线的顶点,连接 BD ,点 H BD 的中点.请解答下列问题:

(1)求抛物线的解析式及顶点 D 的坐标;

(2)在 y 轴上找一点 P ,使 PD + PH 的值最小,则 PD + PH 的最小值为  

(注:抛物线 y = a x 2 + bx + c ( a 0 ) 的对称轴是直线 x = b 2 a ,顶点坐标为 ( b 2 a 4 ac b 2 4 a )

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 4 AD = 3 ,矩形内部有一动点 P 满足 S ΔPAB = 1 3 S 矩形ABCD ,则点 P A B 两点的距离之和 PA + PB 的最小值为  

来源:2018年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, AC = 6 2 BD = 6 E BC 边的中点, P M 分别是 AC AB 上的动点,连接 PE PM ,则 PE + PM 的最小值是 (    )

A.6B. 3 3 C. 2 6 D.4.5

来源:2018年广西贵港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,一次函数 y = 1 2 x + 5 2 的图象与反比例函数 y = k x ( k > 0 ) 的图象交于 A B 两点,过 A 点作 x 轴的垂线,垂足为 M ΔAOM 面积为1.

(1)求反比例函数的解析式;

(2)在 y 轴上求一点 P ,使 PA + PB 的值最小,并求出其最小值和 P 点坐标.

来源:2018年四川省绵阳市中考数学试卷
  • 题型:未知
  • 难度:未知

如图, ΔABC 三个顶点的坐标分别为 A ( 1 , 1 ) B ( 4 , 2 ) C ( 3 , 4 )

(1)请画出将 ΔABC 向左平移4个单位长度后得到的图形△ A 1 B 1 C 1

(2)请画出 ΔABC 关于原点 O 成中心对称的图形△ A 2 B 2 C 2

(3)在 x 轴上找一点 P ,使 PA + PB 的值最小,请直接写出点 P 的坐标.

来源:2016年云南省昆明市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E F 分别是边 AD BC 的中点,连接 DF ,过点 E EH DF ,垂足为 H EH 的延长线交 DC 于点 G

(1)猜想 DG CF 的数量关系,并证明你的结论;

(2)过点 H MN / / CD ,分别交 AD BC 于点 M N ,若正方形 ABCD 的边长为10,点 P MN 上一点,求 ΔPDC 周长的最小值.

来源:2018年山东省济宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,等腰 ΔABC 的底边 BC = 20 ,面积为120,点 F 在边 BC 上,且 BF = 3 FC EG 是腰 AC 的垂直平分线,若点 D EG 上运动,则 ΔCDF 周长的最小值为  

来源:2018年四川省泸州市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系内有两点 A B ,其坐标为 A ( 1 , 1 ) B ( 2 , 7 ) ,点 M x 轴上的一个动点,若要使 MB MA 的值最大,则点 M 的坐标为  

来源:2018年山东省东营市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AOB = 90 ° OA = 3 OB = 4 ,以点 O 为圆心,2为半径的圆与 OB 交于点 C ,过点 C CD OB AB 于点 D ,点 P 是边 OA 上的动点.当 PC + PD 最小时, OP 的长为 (    )

A. 1 2 B. 3 4 C.1D. 3 2

来源:2020年山东省潍坊市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学轴对称-最短路线问题试题