优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 图形的剪拼
初中数学

将一张圆形纸片(圆心为点 O ) 沿直径 MN 对折后,按图1分成六等份折叠得到图2,将图2沿虚线 AB 剪开,再将 ΔAOB 展开得到如图3的一个六角星.若 CDE = 75 ° ,则 OBA 的度数为   

来源:2021年四川省资阳市中考数学试卷
  • 题型:未知
  • 难度:未知

七巧板起源于我国先秦时期,古算书《周髀算经》中有关于正方形的分割术,经历代演变而成七巧板,如图1所示 . 19 世纪传到国外,被称为"唐图"(意为"来自中国的拼图" ) ,图2是由边长为4的正方形分割制作的七巧板拼摆而成的"叶问蹬"图,则图中抬起的"腿"(即阴影部分)的面积为 (    )

A.

3

B.

7 2

C.

2

D.

5 2

来源:2021年四川省乐山市中考数学试卷
  • 题型:未知
  • 难度:未知

小明有一个呈等腰三角形的积木盒,现在积木盒中只剩下如图的九个空格,下面有四种积木的搭配,其中不能放入的有 (    )

A.

搭配①

B.

搭配②

C.

搭配③

D.

搭配④

来源:2021年山东省枣庄市中考数学试卷
  • 题型:未知
  • 难度:未知

综合实践活动课上,小亮将一张面积为 24 c m 2 ,其中一边 BC 8 cm 的锐角三角形纸片(如图 1 ) ,经过两刀裁剪,拼成了一个无缝隙、无重叠的矩形 BCDE (如图 2 ) ,则矩形的周长为    cm

来源:2021年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

如图所示的图案由三个叶片组成,绕点 O 旋转 120 ° 后可以和自身重合.若每个叶片的面积为 4 c m 2 AOB 120 ° ,则图中阴影部分的面积之和为    c m 2

来源:2021年青海省中考数学试卷
  • 题型:未知
  • 难度:未知

七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数学活动课上,小明用边长为 4 cm 的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品 - - “奔跑者”,其中阴影部分的面积为 5 c m 2 的是 (    )

A.B.

C.D.

来源:2020年山东省烟台市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是一张平行四边形纸片,其高 AG = 2 cm ,底边 BC = 6 cm B = 45 ° ,沿虚线 EF 将纸片剪成两个全等的梯形,若 BEF = 30 ° ,则 AF 的长为 (    )

A.

1 cm

B.

6 3 cm

C.

( 2 3 - 3 ) cm

D.

( 2 - 3 ) cm

来源:2020年山东省泰安市中考数学试卷
  • 题型:未知
  • 难度:未知

用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为 a ,小正方形地砖面积为 b ,依次连接四块大正方形地砖的中心得到正方形 ABCD .则正方形 ABCD 的面积为  .(用含 a b 的代数式表示)

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,等边三角形纸片 ABC 的边长为6, E F 是边 BC 上的三等分点.分别过点 E F 沿着平行于 BA CA 方向各剪一刀,则剪下的 ΔDEF 的周长是  

来源:2020年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

将两条邻边长分别为 2 ,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的  (填序号).

2 ,②1,③ 2 - 1 ,④ 3 2 ,⑤ 3

来源:2020年浙江省绍兴市中考数学试卷
  • 题型:未知
  • 难度:未知

小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形 ABCD 的边长为 4 dm ,则图2中 h 的值为  ( 4 + 2 )   dm

来源:2020年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是 (    )

A.1和1B.1和2C.2和1D.2和2

来源:2020年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 纸板中, AC = 4 BC = 2 AB = 5 P AC 上一点,过点 P 沿直线剪下一个与 ΔABC 相似的小三角形纸板,如果有4种不同的剪法,那么 AP 长的取值范围是  

来源:2018年江苏省常州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,正方形硬纸片 ABCD 的边长是4,点 E F 分别是 AB BC 的中点,若沿左图中的虚线剪开,拼成如图的一座“小别墅”,则图中阴影部分的面积是 (    )

A.2B.4C.8D.10

来源:2018年浙江省杭州市临安市中考数学试卷
  • 题型:未知
  • 难度:未知

一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知道九个小矩形中 n 个小矩形的周长,就一定能算出这个大矩形的面积,则 n 的最小值是 (    )

A.3B.4C.5D.6

来源:2017年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学图形的剪拼试题