已知:关于x的一元二次方程mx2﹣(4m+1)x+3m+3="0" (m>1).
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=x1﹣3x2,求这个函数的解析式;
(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围.
如图,一次函数y=kx+3的图象分别交x轴、y轴于点C、点D,与反比例函数的图象在第四象限相交于点P,并且PA⊥x轴于点A,PB⊥y轴于点B,已知B(0,-6)且S△DBP=27.
(1)求上述一次函数与反比例函数的表达式;
(2)设点Q是一次函数y=kx+3图象上的一点,且满足△DOQ的面积是△COD面积的2倍,直接写出点Q的坐标.
(3)若反比例函数的图象与△ABP总有公共点,直接写出n的取值范围.
如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y= (k≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x,y轴正半轴交于点H,G,求线段OG的长.
如图,在直角坐标系xOy中,直线与双曲线相交于、B两点,矩形的边恰好被点平分,边交双曲线于点,四边形的面积为2.
(1)求n的值;
(2)求不等式的解集
如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.
(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?
如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数的图象相交于点A(m,1)、B(﹣1,n),与x轴相交于点C(2,0),且AC=OC.
(1)求该反比例函数和一次函数的解析式;
(2)直接写出不等式ax+b≥的解集.
如图1,已知(x>)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.
(1)如图2,连结BP,求△PAB的面积;
(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求此时P点的坐标;
(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.
如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=于点D,过D作两坐标轴的垂线DC、DE,连接OD.
(1)求证:AD平分∠CDE;
(2)对任意的实数b(b≠0),求证AD·BD为定值;
(3)是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.
如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y=(k>0)在第一象限内的图象经过点A,与BC交于点F.
(1)若OA=10,求反比例函数解析式;
(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;
(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO.是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.
如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
如图,在矩形ABCD中,AB=6,AD=,点E是AD的三等分点,且AEDE,过点E作EF∥AB交BC于F,并作射线DC和AB,点P、Q分别是射线DC和射线AB上动点,点P以每秒1个单位的速度向右平移,且始终满足∠PQA=60°,设P点运动的时间为.
(1)当点Q与点B重合时,求DP的长度;
(2)设AB的中点为N,PQ与线段BE相交于点M,是否存在点P,使△为等腰三角形?若存在,请直接写出时间的值;若不存在,请说明理由.
(3)设△与四边形的重叠部分的面积为S,试求S与的函数关系式和相应的自变量的取值范围.
如图,已知反比例函数的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB 的面积为2.若直线 y="ax+b" 经过点A,并且经过反比例函数的图象上另一点C(n,一2).
(1)求反比例函数与直线y=ax+b的解析式;
(2)根据所给条件,直接写出不等式 ax+b≥的解集_________________;
(3)求出线段OA的长,并思考:在x轴上是否存在一点P,使得△PAO是等腰三角形,如果存在,请求出P的坐标,如果不存在,请说明理由。
为了预防H7N9禽流感,某学校对教室采用药熏消毒法进行消毒.已知,药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示).现测得药物4分钟燃毕,此室内空气中每立方米的含药量为8毫克,请你根据题中所提供的信息,解答下列问题:
(1)求出药物燃烧时与药物燃烧后y与x的函数关系式,并写出相应的自变量的取值范围 。
(2)研究表明,当空气中每立方米的含药量不低于2毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
如图,已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数y= 的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.
试题篮
()