优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质
初中数学

把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为     

  • 题型:未知
  • 难度:未知

如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与 BC交于点E,F在DA的延长线上,且AF=AE. (1)求证:BF是⊙O的切线; (2)若AD=4,,求BC的长.

  • 题型:未知
  • 难度:未知

某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A.小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法:方法一:在底边BC上找一点D,连接AD作为分割线;
方法二:在腰AC上找一点D,连接BD作为分割线;
方法三:在腰AB上找一点D,作DE∥BC,交AC于点E,DE作为分割线;
方法四:以顶点A为圆心,AD为半径作弧,交AB于点D,交AC于点E,弧DE作为分割线.

这些分割方法中分割线最短的是( )
A.方法一     B.方法二     C.方法三     D.方法四

  • 题型:未知
  • 难度:未知

在四边形ABCD中,E是AD上一点,且BE//CD,AB//CE,△ABE的面积记为S,△BEC的面积记为S2,△DEC的面积记为S3

①试判断△ABE与△ECD是否相似,并说明理由.
②当S=6,S=3时,求S的值.
③猜想S,S,S之间的等量关系,并说明你的理由.

  • 题型:未知
  • 难度:未知

如图,矩形 EFGH 的四个顶点分别在菱形 ABCD 的四条边上, BE = BF .将 ΔAEH ΔCFG 分别沿边 EH FG 折叠,当重叠部分为菱形且面积是菱形 ABCD 面积的 1 16 时,则 AE EB (    )

A. 5 3 B.2C. 5 2 D.4

来源:2017年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如果把两条直角边长分别为5,10的直角三角形按相似比 3 5 进行缩小,得到的直角三角形的面积是  

来源:2019年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③ ) 的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为 m ,水平部分线段长度之和记为 n ,则这三个多边形中满足 m = n 的是 (    )

A.

只有②

B.

只有③

C.

②③

D.

①②③

来源:2016年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作▱DEFA.

(1)当m=1时,求AE的长.
(2)当0<m<3时,若▱DEFA为矩形,求m的值;
(3)是否存在m的值,使得▱DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在△ABC中,D、E分别是AB、AC的中点,则△ADE与△ABC的面积比为             

  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是       

  • 题型:未知
  • 难度:未知

如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.

(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.

  • 题型:未知
  • 难度:未知

在比例尺是1:8000的某市地图上,若一条路的长度约25cm,则它的实际长度约为______;对于地图上3cm×5cm的矩形广场相应的实际占地面积为_____平方千米.

  • 题型:未知
  • 难度:未知

如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB是____米.

  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AB=3,AD=4,将此矩形折叠,使点D落在AB边上的点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,设AE=x,四边形EFHQ的面积为y,则y关于x的函数解析式是                     

  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)

(1)若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为     
②当AC=3,BC=4时,AD的长为     
(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质试题