优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质
初中数学

如图,在□ABCD中,点E在BC上,∠CDE=∠DAE.
(1)求证:△ADE∽△DEC;
(2)若AD=6,DE=4,求BE的长.

  • 题型:未知
  • 难度:未知

(满分l4分)如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长度的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长度的速度向点B匀速运动.伴随着P,Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB—BC—CP于点E.点P,Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P,Q运动的时间是t s(t>O).
(1)当t=2时,AP=________,点Q到AC的距离是_________;
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,也请说明理由.

  • 题型:未知
  • 难度:未知

手工制作课上,小红利用一些花布的边角料,剪裁后装裱手工画.下面四个图案是她剪裁出的
空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相同,那么,每个图
案中花边的内外边缘所围成的几何图形不相似的是

  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ADE沿DE翻折后,点A落在点A'处,若A'为CE的中点,则折痕DE的长为(     )

A.1 B.2 C.4 D.6

  • 题型:未知
  • 难度:未知

如图,矩形 EFGH 的四个顶点分别在菱形 ABCD 的四条边上, BE = BF .将 ΔAEH ΔCFG 分别沿边 EH FG 折叠,当重叠部分为菱形且面积是菱形 ABCD 面积的 1 16 时,则 AE EB (    )

A. 5 3 B.2C. 5 2 D.4

来源:2017年浙江省台州市中考数学试卷
  • 题型:未知
  • 难度:未知

如果把两条直角边长分别为5,10的直角三角形按相似比 3 5 进行缩小,得到的直角三角形的面积是  

来源:2019年辽宁省抚顺市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③ ) 的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为 m ,水平部分线段长度之和记为 n ,则这三个多边形中满足 m = n 的是 (    )

A.

只有②

B.

只有③

C.

②③

D.

①②③

来源:2016年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作▱DEFA.

(1)当m=1时,求AE的长.
(2)当0<m<3时,若▱DEFA为矩形,求m的值;
(3)是否存在m的值,使得▱DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在△ABC中,D、E分别是AB、AC的中点,则△ADE与△ABC的面积比为             

  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是       

  • 题型:未知
  • 难度:未知

如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.

(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.

  • 题型:未知
  • 难度:未知

在比例尺是1:8000的某市地图上,若一条路的长度约25cm,则它的实际长度约为______;对于地图上3cm×5cm的矩形广场相应的实际占地面积为_____平方千米.

  • 题型:未知
  • 难度:未知

如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB是____米.

  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AB=3,AD=4,将此矩形折叠,使点D落在AB边上的点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,设AE=x,四边形EFHQ的面积为y,则y关于x的函数解析式是                     

  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)

(1)若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为     
②当AC=3,BC=4时,AD的长为     
(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质试题