如图,已知在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=11,BC=13,AB=12.动点P、Q分别在边AD和BC上,且BQ=3DP.线段PQ与BD相交于点E,过点E作EF∥BC,交CD于点F,射线PF交BC的延长线于点G,设DP=x
(1)求
的值.
(2)当点P运动时,试探究四边形EFGQ的面积是否会发生变化?如果发生变化,请用x的代数式表示四边形EFGQ的面积S;如果不发生变化,请求出这个四边形的面积S.
如图,△ABC内接于⊙O,AB=AC,弦AD交BC于点E,AE=4,ED=5.(1)求证:AD平分∠BDC;
(2)求AC的长;
(3)若∠BCD的平分线CI与AD相交于点I,求证:AI=AC.
已知:如图,是⊙O的直径,点
是
上任意一点,过点
作弦
点
是
上任一点,连结
交
于
连结AC、CF、BD、OD.
(1)求证:
;
(2)猜想:
与
的数量关系,并证明你的猜想;
(3)试探究:当点
位于何处时,△
的面积与△
的面积之比为1:2?并加以证明.
如图,在中,
,在
边上取一点
,使
,过
作
交AC于E,AC=8,BC=6.求DE的长.
如图,在矩形ABCD中,AB =6,AD =11.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边始终经过点C,另一直角边与AB交于点E.
(1)△CDP与△PAE相似吗?如果相似,请写出证明过程;
(2)当∠PCD =30°时,求AE的长;(3)是否存在这样的点P,使△CDP的周长等于△PAE周长的2倍?若存在,求DP的长;若不存在,请说明理由.
已知:如图,在△ABC中,点D,E分别在AB,AC上,连接DC,BE,若∠BDE+∠BCE=180°.
(1)写出图中两对相似三角形(注意:不得添加字母和线);
(2)请你在所找出的相似三角形中选取一对,给予证明。
如图,已知矩形ABCD中,BC=6,AB=8,延长AD到点E,使AE=15,连结BE交AC于点P.(1)求AP的长;
(2)若以点A为圆心,AP为半径作⊙A,试判断线段BE与⊙A的位置关系并说明理由;
(3)已知以点A为圆心,r1为半径的动OA,使点D在动⊙A的内部,点B在动⊙A的外部.
①则动⊙A的半径r1的取值范围是 ▲ ;
②若以点C为圆心,r2为半径的动⊙C与动⊙A相切,则r2的取值范围是 ▲ .
在Rt△ACB中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长,与BC的延长线交于点F.(1)求证:BD
=BF.
(2)若BC=6,AD=4,求⊙O的面积.
(本题8分)如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.(1)求证:△ABD∽△AEB;
(2)若AD=1,DE=3,求BD的长.
(本小题满分10分)
在图1至图3中,直线MN与线段AB相交
于点O,∠1 = ∠2 = 45°.(1)如图1,若AO = OB,请写出AO与BD
的数量关系和位置关系;(2)将图1中的MN绕点O顺时针旋转得到
图2,其中AO = OB.
求证:AC = BD,AC ⊥ BD;(3)将图2中的OB拉长为AO的k倍得到
图3,求的值.
如图,在平面直角坐标系中,点O为坐标原点,以点A(0,-3)为圆心,5为半径作圆A,交x轴于B、C两点,交y轴于点D、E两点.(1)如果一个二次函数图象经过B、C、D三点,求这个二次函数的解析式;
(2)设点P的坐标为(m,0)(m>5),
过点P作
x轴交(1)中的抛物线于点Q,当以
为顶点的三角形与
相似时,求点P的坐标.
(本题满分12分)正方形边长为4,
、
分别是
、
上的两个动点,当
点在
上运动时,保持
和
垂直,
⑴证明:
;
⑵设
,梯形
的面积为
,求
与
之间的函数关系式;
⑶梯形
的面积可能等于12吗?为什么?
如图,在等腰梯形中,
∥
,AD=AB.过
作
,交
于
,延长
至
,使
.
(1)请指出四边形
的形状,并证明;
(2)如果
,
,求三角形
的面积.
如右图,在等腰梯形ABCD中,AD∥BC,AD=AB.过A作AF⊥BD,交BC于G,延长BC至E,使CE=CD.(1)请指出四边形ACED的形状,并证明;
(2)如果BD=8,AG=6,求△BDE的面积.
试题篮
()