优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 解答题
初中数学

如图,是∠ABC的角平分线,求证:

  • 题型:未知
  • 难度:未知

如图,△ABC的边BC在直线l上,AD是△ABC的高,∠ABC=45°,BC=6cm,AB=2cm.点P从点B出发沿BC方向以1cm/s速度向点C运动,当点P到点C时,停止运动.PQ⊥BC,PQ交AB或AC于点Q,以PQ为一边向右侧作矩形PQRS,PS=2PQ.矩形PQRS与△ABC的重叠部分的面积为S(cm2),点P的运动时间为t(s).回答下列问题:

(1)AD=         cm;
(2)当点R在边AC上时,求t的值;
(3)求S与t之间的函数关系式.

  • 题型:未知
  • 难度:未知

如图,图中的小方格都是边长为1的正方形,△ABC的A、B、C三点坐标为A(2,0)、B(2,2)、C(6,3).

(1)请在图中画出一个△A′B′C′,使△A′B′C′与△ABC是以坐标原点为位似中心,相似比为2的位似图形.
(2)求△A′B′C′的面积.

  • 题型:未知
  • 难度:未知

定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是  ;当m=5,n=2时,如图2,线段BC与线段OA的距离为 
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

王华在学习相似三角形时,在北京市义务教育课程改革实验教材第17册书,第31页遇到这样一道题:
如图1,在△ABC中,P是边AB上的一点,联结CP.
要使△ACP∽△ABC,还需要补充的一个条件是____________,或_________.
请回答:
(1)王华补充的条件是____________________,或_________________.
(2)请你参考上面的图形和结论,探究、解答下面的问题:
如图2,在△ABC中,∠A=30°,AC2= AB2+AB.BC.
求∠C的度数.

  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,E为CD上一点,连结AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,求DE∶EC的值.

  • 题型:未知
  • 难度:未知

如图,已知∠1=∠2,∠AED=∠C,求证:△ABC∽△ADE

  • 题型:未知
  • 难度:未知

如图,四边形的内接矩形,如果的高线,底边,设

(1)求关于的函数关系式;
(2)当为何值时, 四边形的面积最大?最大面积是多少?

  • 题型:未知
  • 难度:未知

如图,在阳光下某一时刻大树AB的影子落在墙DE上的C点,同时1.2 m的标杆影长3 m,已知CD=4m,BD="6" m,求大树的高度.

  • 题型:未知
  • 难度:未知

在“测量物体的高度” 活动中,某数学兴趣小组的3名同学选择了测量学校里的三棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:
小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4米(如图1).
小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.               
小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.3米,一级台阶高为0.3米,落在地面上的影长为4.5米.

(1)在横线上直接填写甲树的高度为         米.
(2)求出乙树的高度.
(3)请选择丙树的高度为(    )

A.6.5米 B.5. 5米 C.6.3米 D.4.9米
  • 题型:未知
  • 难度:未知

如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河宽?

  • 题型:未知
  • 难度:未知

已知格点△ABC.
(1)画出与△ABC相似的格点△A1B1C1,使△A1B1C1与△ABC的相似比为2;
(2)画出与△ABC相似的格点△A2B2C2,使△A2B2C2与△ABC的相似比为

  • 题型:未知
  • 难度:未知

已知a:b:c=3:2:5, 求的值.

  • 题型:未知
  • 难度:未知

如图,△ABC的边BC在直线l上,AD是△ABC的高,∠ABC=45°,BC=6cm,AB=cm,点 P 从点B出发沿BC方向以1cm/s的速度向点C运动,当点P到点C时,停止运动.PQ⊥BC,PQ交AB或AC于点Q,以PQ为一边向右侧作矩形PQRS,PS=2PQ,矩形PQRS与△ABC重叠部分的面积为S(cm2),点P的运动时间为t(s).回答下列问题:

(1)AD=            cm;
(2)当点R在边AC上时,求t的值;
(3)求S与t之间的函数关系式.

  • 题型:未知
  • 难度:未知

已知,如图所示,在Rt△ABC中,∠C=90°,有一内接正方形DEFC,连接AF交DE于G,AC=15,BC=10,求EG的长.

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质解答题