求证:相似三角形对应边上的中线之比等于相似比.
要求:①根据给出的 及线段 , ,以线段 为一边,在给出的图形上用尺规作出△ ,使得△ ,不写作法,保留作图痕迹;
②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.
如图1, 中, ,点 在 上, ,过 、 两点的圆的圆心 在 上.
(1)利用直尺和圆规在图1中画出 (不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);
(2)判断 所在直线与(1)中所作的 的位置关系,并证明你的结论;
(3)设 交 于点 ,连接 ,过点 作 , 为垂足,若点 是线段 的黄金分割点(即 ,如图2,试说明四边形 是正方形).
如图, 是一块直角三角板,且 , ,现将圆心为点 的圆形纸片放置在三角板内部.
(1)如图①,当圆形纸片与两直角边 、 都相切时,试用直尺与圆规作出射线 ;(不写作法与证明,保留作图痕迹)
(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若 ,圆形纸片的半径为2,求圆心 运动的路径长.
试题篮
()