优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似三角形的判定与性质
初中数学

如图, AB O 的直径,弦 CD AB 于点 F OE AC 于点 E ,若 OE = 3 OB = 5 ,则 CD 的长度是 (    )

A.

9.6

B.

4 5

C.

5 3

D.

10

来源:2021年四川省自贡市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = BC ,以 ΔABC 的边 AB 为直径作 O ,交 AC 于点 D ,过点 D DE BC ,垂足为点 E

(1)试证明 DE O 的切线;

(2)若 O 的半径为5, AC = 6 10 ,求此时 DE 的长.

来源:2020年山东省聊城市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,过 O 外一点 P O 的切线 PA O 于点 A ,连接 PO 并延长,与 O 交于 C D 两点, M 是半圆 CD 的中点,连接 AM CD 于点 N ,连接 AC CM

(1)求证: C M 2 = MN MA

(2)若 P = 30 ° PC = 2 ,求 CM 的长.

来源:2018年四川省遂宁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OA = OC OB = OD + CD

(1)过点 A AE / / DC BD 于点 E ,求证: AE = BE

(2)如图2,将 ΔABD 沿 AB 翻折得到 ΔAB D '

①求证: B D ' / / CD

②若 A D ' / / BC ,求证: C D 2 = 2 OD · BD

来源:2020年山东省菏泽市中考数学试卷
  • 题型:未知
  • 难度:未知

已知在 Rt Δ ABC 中, BAC = 90 ° AB AC D E 分别为 AC BC 边上的点(不包括端点),且 DC BE = AC BC = m ,连接 AE ,过点 D DM AE ,垂足为点 M ,延长 DM AB 于点 F

(1)如图1,过点 E EH AB 于点 H ,连接 DH

①求证:四边形 DHEC 是平行四边形;

②若 m = 2 2 ,求证: AE = DF

(2)如图2,若 m = 3 5 ,求 DF AE 的值.

来源:2018年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

问题探究:

小红遇到这样一个问题:如图1, ΔABC 中, AB = 6 AC = 4 AD 是中线,求 AD 的取值范围.她的做法是:延长 AD E ,使 DE = AD ,连接 BE ,证明 ΔBED ΔCAD ,经过推理和计算使问题得到解决.

请回答:(1)小红证明 ΔBED ΔCAD 的判定定理是:   

(2) AD 的取值范围是  

方法运用:

(3)如图2, AD ΔABC 的中线,在 AD 上取一点 F ,连结 BF 并延长交 AC 于点 E ,使 AE = EF ,求证: BF = AC

(4)如图3,在矩形 ABCD 中, AB BC = 1 2 ,在 BD 上取一点 F ,以 BF 为斜边作 Rt Δ BEF ,且 EF BE = 1 2 ,点 G DF 的中点,连接 EG CG ,求证: EG = CG

来源:2020年山东省德州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC AD BC 边上的中线, DE AB 于点 E

(1)求证: ΔBDE ΔCAD

(2)若 AB = 13 BC = 10 ,求线段 DE 的长.

来源:2018年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 8 BC = 4 CA = 6 CD / / AB BD ABC 的平分线, BD AC 于点 E ,求 AE 的长.

来源:2018年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在边长为 2 2 的正方形 ABCD 中,点 E F 分别是边 AB BC 的中点,连接 EC FD ,点 G H 分别是 EC FD 的中点,连接 GH ,则 GH 的长度为  

来源:2020年河南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 6 BC = 10 ,点 E F AD 边上, BF CE 交于点 G ,若 EF = 1 2 AD ,则图中阴影部分的面积为 (    )

A.25B.30C.35D.40

来源:2020年海南省中考数学试卷
  • 题型:未知
  • 难度:未知

四边形 ABCD 是边长为2的正方形, E AB 的中点,连结 DE ,点 F 是射线 BC 上一动点(不与点 B 重合),连结 AF ,交 DE 于点 G

(1)如图1,当点 F BC 边的中点时,求证: ΔABF ΔDAE

(2)如图2,当点 F 与点 C 重合时,求 AG 的长;

(3)在点 F 运动的过程中,当线段 BF 为何值时, AG = AE ?请说明理由.

来源:2020年海南省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° ,以其三边为边向外作正方形,过点 C CR FG 于点 R ,再过点 C PQ CR 分别交边 DE BH 于点 P Q .若 QH = 2 PE PQ = 15 ,则 CR 的长为 (    )

A.14B.15C. 8 3 D. 6 5

来源:2020年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

由四个全等的直角三角形和一个小正方形组成的大正方形 ABCD 如图所示.过点 D DF 的垂线交小正方形对角线 EF 的延长线于点 G ,连结 CG ,延长 BE CG 于点 H .若 AE = 2 BE ,则 CG BH 的值为 (    )

A.

3 2

B.

2

C.

3 10 7

D.

3 5 5

来源:2021年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,以 Rt Δ ABC 的直角边 AB 为直径作 O 交斜边 AC 于点 D ,过圆心 O OE / / AC ,交 BC 于点 E ,连接 DE

(1)判断 DE O 的位置关系并说明理由;

(2)求证: 2 D E 2 = CD · OE

(3)若 tan C = 4 3 DE = 5 2 ,求 AD 的长.

来源:2018年四川省内江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点 A 的坐标为 ( 0 , 1 ) ,点 B x 轴正半轴上的一动点,以 AB 为边作 Rt Δ ABC ,使 BAC = 90 ° ACB = 30 ° ,设点 B 的横坐标为 x ,点 C 的纵坐标为 y ,能表示 y x 的函数关系的图象大致是 (    )

A.B.

C.D.

来源:2018年四川省攀枝花市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学相似三角形的判定与性质试题