如图,已知点 是矩形 的对角线 上的一动点,正方形 的顶点 、 都在边 上,若 , ,则 的值
A.等于 B.等于
C.等于 D.随点 位置的变化而变化
矩形 中, , .分别以 , 所在直线为 轴, 轴,建立如图1所示的平面直角坐标系. 是 边上一个动点(不与 , 重合),过点 的反比例函数 的图象与边 交于点 .
(1)当点 运动到边 的中点时,求点 的坐标;
(2)连接 ,求 的正切值;
(3)如图2,将 沿 折叠,点 恰好落在边 上的点 处,求此时反比例函数的解析式.
某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺 的0刻度固定在半圆的圆心 处,刻度尺可以绕点 旋转.从图中所示的图尺可读出 的值是
A. B. C. D.
如图, 中, , , .
(1)请画出将 向右平移8个单位长度后的△ ;
(2)求出 的余弦值;
(3)以 为位似中心,将△ 缩小为原来的 ,得到△ ,请在 轴右侧画出△ .
如图,矩形 的四个顶点分别在直线 , , , 上.若直线 且间距相等, , ,则 的值为
A. B. C. D.
如图,过锐角 的顶点 作 , 恰好平分 , 平分 交 的延长线于点 .在 上取点 ,使得 ,连接 并延长交直线 于点 .若 , 的面积是 ,则 的值是 .
问题探究:
小红遇到这样一个问题:如图1, 中, , , 是中线,求 的取值范围.她的做法是:延长 到 ,使 ,连接 ,证明 ,经过推理和计算使问题得到解决.
请回答:(1)小红证明 的判定定理是: ;
(2) 的取值范围是 ;
方法运用:
(3)如图2, 是 的中线,在 上取一点 ,连结 并延长交 于点 ,使 ,求证: .
(4)如图3,在矩形 中, ,在 上取一点 ,以 为斜边作 ,且 ,点 是 的中点,连接 , ,求证: .
如图, 是 的直径,点 在 上(点 不与 , 重合),直线 交过点 的切线于点 ,过点 作 的切线 交 于点 .
(1)求证: ;
(2)若 ,求 的值.
试题篮
()