疫苗接种初期,为更好地响应国家对符合条件的人群接种新冠疫苗的号召,某市教育部门随机抽取了该市部分七、八、九年级教师,了解教师的疫苗接种情况,得到如下统计表:
已接种 |
未接种 |
合计 |
|
七年级 |
30 |
10 |
40 |
八年级 |
35 |
15 |
|
九年级 |
40 |
|
60 |
合计 |
105 |
|
150 |
(1)表中, , , ;
(2)由表中数据可知,统计的教师中接种率最高的是 年级教师;(填“七”或“八”或“九”
(3)若该市初中七、八、九年级一共约有8000名教师,根据抽样结果估计未接种的教师约有 人;
(4)为更好地响应号召,立德中学从最初接种的4名教师(其中七年级1名,八年级1名,九年级2名)中随机选取2名教师谈谈接种的感受,请用列表或画树状图的方法,求选中的两名教师恰好不在同一年级的概率.
某市在实施居民用水定额管理前,对居民生活用水情况进行了调查.通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如表:
序号 |
1 |
2 |
|
25 |
26 |
|
50 |
51 |
|
75 |
76 |
|
99 |
100 |
月均用水量 |
1.3 |
1.3 |
|
4.5 |
4.5 |
|
6.4 |
6.8 |
|
11 |
13 |
|
25.6 |
28 |
(1)求这组数据的中位数.已知这组数据的平均数为 ,你对它与中位数的差异有什么看法?
(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使 的家庭水费支出不受影响,你觉得这个标准应该定为多少?
近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月 , 两种移动支付方式的使用情况,从企业2000名员工中随机抽取了200人,发现样本中 , 两种支付方式都不使用的有10人,样本中仅使用 种支付方式和仅使用 种支付方式的员工支付金额 (元 分布情况如表:
支付金额 (元 |
|
|
|
仅使用 |
36人 |
18人 |
6人 |
仅使用 |
20人 |
28人 |
2人 |
下面有四个推断:
①根据样本数据估计,企业2000名员工中,同时使用 , 两种支付方式的为800人;
②本次调查抽取的样本容量为200人;
③样本中仅使用 种支付方式的员工,该月支付金额的中位数一定不超过1000元;
④样本中仅使用 种支付方式的员工,该月支付金额的众数一定为1500元.
其中正确的是
A. |
①③ |
B. |
③④ |
C. |
①② |
D. |
②④ |
为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:
废旧电池数 节 |
4 |
5 |
6 |
7 |
8 |
人数 人 |
9 |
11 |
11 |
5 |
4 |
请根据学生收集到的废旧电池数,判断下列说法正确的是
A. |
样本为40名学生 |
B. |
众数是11节 |
C. |
中位数是6节 |
D. |
平均数是5.6节 |
某校男子足球队的年龄分布如下表:
年龄 |
13 |
14 |
15 |
16 |
17 |
18 |
人数 |
2 |
6 |
8 |
3 |
2 |
1 |
则这些队员年龄的众数和中位数分别是
A. |
8,15 |
B. |
8,14 |
C. |
15,14 |
D. |
15,15 |
学校为了解"阳光体育"活动开展情况,随机调查了50名学生一周参加体育锻炼时间,数据如下表所示:
人数(人 |
9 |
16 |
14 |
11 |
时间(小时) |
7 |
8 |
9 |
10 |
这些学生一周参加体育锻炼时间的众数、中位数分别是
A. |
16,15 |
B. |
11,15 |
C. |
8,8.5 |
D. |
8,9 |
某社区针对5月30日前该社区居民接种新冠疫苗的情况开展了问卷调查,共收回6000份有效问卷.经统计,制成如下数据表格.
接种疫苗针数 |
0 |
1 |
2 |
3 |
人数 |
2100 |
2280 |
1320 |
300 |
小杰同学选择扇形统计图分析接种不同针数的居民人数所占总人数的百分比.下面是制作扇形统计图的步骤(顺序打乱)
①计算各部分扇形的圆心角分别为 , , , .
②计算出接种不同针数的居民人数占总人数的百分比分别为 , , , .
③在同一个圆中,根据所得的圆心角度数画出各个扇形,并注明各部分的名称及相应的百分比.
制作扇形统计图的步骤排序正确的是
A. |
②①③ |
B. |
①③② |
C. |
①②③ |
D. |
③①② |
2020年我国是全球主要经济体中唯一实现经济正增长的国家,各行各业蓬勃发展,其中快递业务保持着较快的增长.给出了快递业务的有关数据信息.
年快递业务量增长速度统计表
年龄 |
2016 |
2017 |
2018 |
2019 |
2020 |
增长速度 |
|
|
|
|
|
说明:增长速度计算办法为:增长速度
根据图中信息,解答下列问题:
(1) 年快递业务量最多年份的业务量是 亿件.
(2) 年快递业务量增长速度的中位数是 .
(3)下列推断合理的是 (填序号).
①因为 年快递业务量的增长速度逐年下降,所以预估2021年的快递业务量应低于2020年的快递业务量;
②因为 年快递业务量每年的增长速度均在 以上.所以预估2021年快递业务量应在 亿件以上.
在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按"健康、亚健康、不健康"绘制成下列表格,其中测试结果为"健康"的频率是
类型 |
健康 |
亚健康 |
不健康 |
数据(人 |
32 |
7 |
1 |
A. |
32 |
B. |
7 |
C. |
|
D. |
|
某班15名男生引体向上成绩如表:
个数 |
17 |
12 |
10 |
7 |
2 |
人数 |
2 |
3 |
4 |
5 |
1 |
则这组数据的众数和中位数分别是
A. |
10,7 |
B. |
10,10 |
C. |
7,10 |
D. |
7,12 |
为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了: .党史宣讲; .歌曲演唱; .校刊编撰; .诗歌创作等四个小组,团支部将各组人数情况制成了统计图表(不完整).
各组参加人数情况统计表
小组类别 |
|
|
|
|
人数(人 |
10 |
|
15 |
5 |
根据统计图表中的信息,解答下列问题:
(1)求 和 的值;
(2)求扇形统计图中 所对应的圆心角度数;
(3)若在某一周各小组平均每人参与活动的时间如下表所示:
小组类别 |
|
|
|
|
平均用时(小时) |
2.5 |
3 |
2 |
3 |
求这一周四个小组所有成员平均每人参与活动的时间.
为有效推进儿童青少年近视防控工作,教育部办公厅等十五部门联合制定《儿童青少年近视防控光明行动工作方案 年)》,共提出八项主要任务,其中第三项任务为强化户外活动和体育锻炼.我市各校积极落实方案精神,某学校决定开设以下四种球类的户外体育选修课程:篮球、足球、排球、乒乓球.为了解学生需求,该校随机对本校部分学生进行了“你选择哪种球类课程”的调查(要求必须选择且只能选择其中一门课程),并根据调查结果绘制成不完整的统计图表.
课程 |
人数 |
篮球 |
|
足球 |
21 |
排球 |
30 |
乒乓球 |
|
根据图表信息,解答下列问题:
(1)分别求出表中 , 的值;
(2)求扇形统计图中“足球”对应的扇形圆心角的度数;
(3)该校共有2000名学生,请你估计其中选择“乒乓球”课程的学生人数.
"惜餐为荣,殄物为耻",为了解落实"光盘行动"的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位: ,进行整理和分析(餐厨垃圾质量用 表示,共分为四个等级: . , , , . ,下面给出了部分信息.
七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.
八年级10个班的餐厨垃圾质量中 等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.
七、八年级抽取的班级餐厨垃圾质量统计表
年级 |
平均数 |
中位数 |
众数 |
方差 |
等级所占百分比 |
七年级 |
1.3 |
1.1 |
|
0.26 |
|
八年级 |
1.3 |
|
1.0 |
0.23 |
|
根据以上信息,解答下列问题:
(1)直接写出上述表中 , , 的值;
(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合 等级的班级数;
(3)根据以上数据,你认为该校七、八年级的"光盘行动",哪个年级落实得更好?请说明理由(写出一条理由即可).
在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:
成绩(次 |
12 |
11 |
10 |
9 |
人数(名 |
1 |
3 |
4 |
2 |
关于这组数据的结论不正确的是
A. |
中位数是10.5 |
B. |
平均数是10.3 |
C. |
众数是10 |
D. |
方差是0.81 |
为了庆祝中国共产党建党100周年,某校开展了学党史知识竞赛.参加知识竞赛的学生分为甲乙两组,每组学生均为20名,赛后根据竞赛成绩得到尚不完整的统计图表(如图),已知竞赛成绩满分为100分,统计表中 , 满足 .请根据所给信息,解答下列问题:
甲组20名学生竞赛成绩统计表
成绩(分 |
70 |
80 |
90 |
100 |
人数 |
3 |
|
|
5 |
(1)求统计表中 , 的值;
(2)小明按以下方法计算甲组20名学生竞赛成绩的平均分是: (分 .根据所学统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果;
(3)如果依据平均成绩确定竞赛结果,那么竞赛成绩较好的是哪个组?请说明理由.
试题篮
()