为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整)
请根据所给信息,解答下列问题:
(1)第7天,这一路口的行人交通违章次数是多少次?这20天中,行人交通违章6次的有多少天?
(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)
(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?
有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.
甲种糖果 |
乙种糖果 |
丙种糖果 |
|
单价(元 千克) |
15 |
25 |
30 |
千克数 |
40 |
40 |
20 |
(1)求该什锦糖的单价.
(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?
某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.
(1)收集数据
从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述数据
按如下分数段整理、描述这两组样本数据:
成绩 人数 班级 |
|
|
|
|
|
甲班 |
1 |
3 |
3 |
2 |
1 |
乙班 |
2 |
1 |
|
2 |
|
在表中: , .
(3)分析数据
①两组样本数据的平均数、中位数、众数如表所示:
班级 |
平均数 |
中位数 |
众数 |
甲班 |
72 |
|
75 |
乙班 |
73 |
70 |
|
在表中: , .
②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有 人.
③现从甲班指定的2名学生 男1女),乙班指定的3名学生 男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.
某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐书量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用 、 、 、 、 表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:
(1)补全条形统计图;
(2)求这30名职工捐书本数的平均数、众数和中位数;
(3)估计该单位750名职工共捐书多少本?
“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周的读书时间,统计数据如下表:
时间(小时) |
6 |
7 |
8 |
9 |
10 |
人数 |
5 |
8 |
12 |
15 |
10 |
(1)写出这50名学生读书时间的众数、中位数、平均数;
(2)根据上述表格补全下面的条形统计图.
(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书活动,其中被抽到学生的读书时间不少于9小时的概率是多少?
某公司共有 、 、 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图
各部门人数及每人所创年利润统计表
部门 |
员工人数 |
每人所创的年利润 万元 |
|
5 |
10 |
|
|
8 |
|
|
5 |
(1)①在扇形图中, 部门所对应的圆心角的度数为
②在统计表中, ,
(2)求这个公司平均每人所创年利润.
自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.
根据上面图表信息,回答下列问题:
(1)截止5月31日该国新冠肺炎感染总人数累计为 万人,扇形统计图中 岁感染人数对应圆心角的度数为 ;
(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图;
(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;
(4)若该国感染病例中从低到高各年龄段的死亡率依次为 、 、 、 、 ,求该国新冠肺炎感染病例的平均死亡率.
8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).
平均分 |
方差 |
中位数 |
众数 |
合格率 |
优秀率 |
|
一班 |
7.2 |
2.11 |
7 |
6 |
|
|
二班 |
6.85 |
4.28 |
8 |
8 |
|
|
根据图表信息,回答问题:
(1)用方差推断, 班的成绩波动较大;用优秀率和合格率推断, 班的阅读水平更好些;
(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?
在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.
(1)本次调查的样本容量是 ,这组数据的众数为 元;
(2)求这组数据的平均数;
(3)该校共有600名学生参与捐款,请你估计该校学生的捐款总数.
为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:
收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88
(1)根据上述数据,将下列表格补充完整.
整理、描述数据:
成绩 分 |
88 |
89 |
90 |
91 |
95 |
96 |
97 |
98 |
99 |
学生人数 |
2 |
1 |
|
3 |
2 |
1 |
|
2 |
1 |
数据分析:样本数据的平均数、众数和中位数如下表
平均数 |
众数 |
中位数 |
93 |
|
91 |
得出结论:
(2)根据所给数据,如果该校想确定七年级前 的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为 分.
数据应用:
(3)根据数据分析,该校决定在七年级授予测评成绩前 的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.
甲、乙两城市某月1日 日中午12时的气温(单位: 如下:
甲 22 20 25 22 18 23 13 27 27 22
乙 21 22 24 18 28 21 18 19 26 18
整理数据:这两组数据的频数分布表如表一.
分析数据:这两组数据的平均数、中位数、众数和方差如表二所示.
表一
分组 |
频数 |
|
甲 |
乙 |
|
|
1 |
0 |
|
1 |
|
|
5 |
|
|
3 |
2 |
表二
统计量 |
甲 |
乙 |
平均数 |
|
21.5 |
中位数 |
22 |
|
众数 |
22 |
|
方差 |
16.09 |
11.25 |
请填空:
(1)在上表中, , , , , ;
(2) 城的气温变化较小;
(3) 城的气温较高,理由是 .
某公司共 25 名员工, 下表是他们月收入的资料 .
月收入 元 |
45000 |
18000 |
10000 |
5500 |
4800 |
3400 |
3000 |
2200 |
人数 |
1 |
1 |
1 |
3 |
6 |
1 |
11 |
1 |
(1) 该公司员工月收入的中位数是 元, 众数是 元 .
(2) 根据上表, 可以算得该公司员工月收入的平均数为 6276 元 . 你认为用平均数、 中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由 .
某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.
(1)求该校九年级学生本次数学测试成绩的平均数;
(2)下列关于本次数学测试说法正确的是
.九年级学生成绩的众数与平均数相等
.九年级学生成绩的中位数与平均数相等
.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数
.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数
为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图(得分为整数,满分为10分,最低分为6分)
请根据图中信息,解答下列问题:
(1)本次调查一共抽取了 名居民;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品?
试题篮
()