经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.
(1)如果这三种情况是等可能的,当三辆汽车经过这个十字路口时,求三辆车全部同向而行的概率;
(2)交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口直行的频率为,向左转和向右转的频率均为.目前在此路口,汽车左转、右转、直行的绿灯亮的时间均为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你对此路口三个方向的绿灯亮的时间做出合理的调整.
如图,有四张背面相同的纸牌A、B、C、D,其正面分别是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张再摸出一张.
(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A,B,C,D表示);
(2)求摸出的两张牌同为红色的概率.
有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.
(1)请你用画树形图或列表的方法列举出可能出现的所有结果;
(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率;
(3)若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的个数,x、y表示对应正多边形的每个内角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值.
小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.
(1)用列表法或画树状图法,求小丽参赛的概率.
(2)你认为这个游戏公平吗?请说明理由.
有三张卡片(背面完全相同)分别写有,1,2把它们背面朝上洗匀后,小军从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张。
(1)两人抽取的卡片上的数都是1的概率是多少?
(2)李刚为他们俩设定了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军胜;否则小明获胜,你认为这个游戏规则对谁有利?请用画树状图的方法进行分析说明.
不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.
(1)求袋中黄球的个数;
(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.
(本题10分)某校九年级举行毕业典礼,需要从九(1)班的2名男生1名女生、九(2)的1
名男生1名女生共5人中选出2名主持人.
(1)用树形图或列表法列出所有可能情形;
(2)求2名主持人来自不同班级的概率;
(3)求2名主持人恰好1男1女的概率.
将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.
把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上数字1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中各随机投取一张.
(1)试求取出的两张卡片数字之和为奇数概率;
(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.
已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同,现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为,.
(1)请你用树形图或列表法列出所有可能的结果.
(2)现制定这样一个游戏规则:若所选出的,能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.
一个口袋中有4个相同的小球,分别与写有字母A,B,C,D,随机地抽出一个小球后放回,再随机地抽出一个小球.
(1)使用列表法或画树状图法中的一种,列举出两次抽出的球上字母的所有可能结果;
(2)求两次抽出的球上字母相同的概率.
请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:
⑴用树状图表示出所有可能的寻宝情况;
⑵求在寻宝游戏中胜出的概率.
(本题8分)在一个不透明的口袋里装有若干个质地相同的红球, 为了估计袋中红球的数量,某学习小组做了摸球实验, 他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色, 再把它放回袋中, 多次重复摸球. 下表是多次活动汇总后统计的数据:
摸球的次数S |
150 |
200 |
500 |
900 |
1000 |
1200 |
摸到白球的频数n |
51 |
64 |
156 |
275 |
303 |
361 |
摸到白球的频率 |
0.34 |
0.32 |
0.312 |
0.306 |
0.303 |
0.301 |
(1)请估计:当摸球次数S很大时, 摸到白球的频率将会接近 ;
假如你去摸一次,你摸到红球的概率是 ;(精确到0.1).
(2)试估算口袋中红球有多少只?
试题篮
()