甲、乙两同学只有一张乒乓球比赛的门票,谁都想去,最后商定通过转盘游戏决定.游戏规则是:转动下面平均分成三个扇形且标有不同颜色的转盘,转盘连续转动两次,若指针前后所指颜色相同,则甲去;否则乙去.(如果指针恰好停在分割线上,那么重转一次,直到指针指向一种颜色为止)
(1)转盘连续转动两次,指针所指颜色共有几种情况?通过画树状图或列表法加以说明;
(2)你认为这个游戏公平吗?请说明理由.
现有5张正面分别标有数字0,1,2,3,4的不透明卡片,它们除数字不同外其余全部
相同。现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根,且关于的分式方程有整数解的概率为 .
在一个不透明的盒子中,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中.不断重复以上操作过程,共摸了100次球,发现有20次摸到黑球,据此估计盒子中白球的个数为( )
A.12个 | B.16个 | C.20个 | D.30个 |
一个不透明的口袋中装有4个分别标有数字-1,-2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.
(1)小红摸出标有数字3的小球的概率是 ;
(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;
(3)若规定:点P (x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.
一个猜想是否正确,科学家们要经过反复的试验论证.下表是几位科学家“掷硬币”的实验数据:
实验者 |
德 摩根 |
蒲丰 |
费勒 |
皮尔逊 |
罗曼诺夫斯基 |
掷币次数 |
6140 |
4040 |
10000 |
36000 |
80640 |
出现“正面朝上”的次数 |
3109 |
2048 |
4979 |
18031 |
39699 |
频率 |
0.506 |
0.507 |
0.498 |
0.501 |
0.492 |
请根据以上数据,估计硬币出现“正面朝上”的概率为 (精确到 .
如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )
A. B. C. D.
如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是 .
在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、圆、正方形、直角梯形,在看不见图形的情况下随机摸出1张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是( )
A. | B. | C. | D. |
一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球 个.
在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )
A. | B. | C. | D. |
在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.
(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;
(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.
扬州某毛绒玩具厂对一批毛绒玩具进行质量抽检的结果如下:
抽取的毛绒玩具数 |
20 |
50 |
100 |
200 |
500 |
1000 |
1500 |
2000 |
优等品的频数 |
19 |
47 |
91 |
184 |
462 |
921 |
1379 |
1846 |
优等品的频率 |
0.950 |
0.940 |
0.910 |
0.920 |
0.924 |
0.921 |
0.919 |
0.923 |
从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是 .(精确到
一个布袋里有6只颜色不同的球,其中2个红球,4个白球,从布袋里任意摸出一个球,则摸出的球的红球的概率为( )
A. | B. | C. | D. |
试题篮
()