为庆祝第29届北京奥运圣火在泉州站传递,甲、乙两校联合准备文艺汇演.甲、乙两校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:
购买服装的套数 |
1套至45套 |
46套至90套 |
91套及以上 |
每套服装的价格 |
60元 |
50元 |
40元 |
如果两所学校分别单独购买服装,一共应付5000元.
(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?
(2)甲、乙两校各有多少学生准备参加演出?
(3)如果甲校有9名同学抽调去参加迎奥运书法比赛不能参加演出,那么你有几种购买方案,通过比较,你该如何购买服装才能最省钱?
定义一种新运算“⊕”:a⊕b=a-2b,比如:2⊕(-3)=2-2×(-3)=2+6=8.
(1)求(-3)⊕2的值;
(2)若(x-3)⊕(x+1)=1,求x的值.
如图,若点A在数轴上对应的数为,点B在数轴上对应的数为b,且,b满足
(1)求线段AB的长;
(2)点C在数轴上对应的数为x,且x是方程 的解,在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由;
(3)在(1)(2)条件下,点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒4个单位长度和9个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请问:AB﹣BC的值是否随时间t的变化而改变?若变化,请说明理由;若不变,请求其常数值.
定义新运算:对于任意有理数a,b,都有a※b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算,比如:2※5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.
(1)求(﹣2)※3的值;
(2)若3※x=5※(x﹣1),求x的值.
修筑一条公路,甲工程队单独承包要80天完成,乙工程队单独承包要120天完成。
(1)现由甲、乙两个工程队合作承包,多少天可以完成?
(2)如果甲、乙两工程队合作了30天后,因甲工程队另有任务,剩下的工作由乙工程队完成,则修好这条公路一共需要多少天完成?
甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.
(1)问甲、乙两个旅行团的人数各是多少?
(2)若乙团中儿童人数恰为甲团人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?
下面是解分式方程的过程,阅读完后请填空:
解方程:=45.
解:方程两边都乘以2x,得960﹣600=90x,
解这个方程,得x=4.
经检验,x=4是原方程的根.
第一步计算中的2x是: ;这个步骤用到的依据是 ;
解分式方程与解一元一次方程之间的联系是: .
(本题12分) 请根据图中提供的信息,回答下列问题:
(1)一个水瓶与一个水杯分别是多少元?
(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
(本题10分)“十一”节,朱老师驾车从江都出发,上高速公路途经江阴大桥到上海下高速,其间用了4.5小时;返回时平均速度提高了10千米/时,比去时少用了半小时回到江都.
(1)根据题意,甲、乙两名同学分别列出尚不完整的方程如下:
甲:
乙:
根据甲、乙两名同学所列的方程,请你分别指出未知数表示的意义,然后在方框中补全两位同学所列的方程:
甲:表示______ __ ____;乙:表示______ ______;甲所列方程中的方框内该
填 ;乙所列方程中的第一个方框内该填 ,第二个方框内该填 .
(2)求江都与上海两地间的高速公路路程.(写出完整的解答过程)
春节将至,某移动公司计划推出两种新的计费方式,如下表所示:
|
方式1 |
方式2 |
月租费 |
30元/月 |
0 |
本地通话费 |
0.20元/分钟 |
0.40元/分钟 |
请解决以下两个问题:(通话时间为正整数)
(1)若本地通话100分钟,按方式一需交费多少元?按方式二需交费多少元?
(2)对于某月本地通话,当通话多长时间时,按两种计费方式的收费一样多?
试题篮
()