同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道时,我们可以这样做:
观察并猜想:
=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
=(1+0)×1+(1+1)×2+(l+2)×3+(1+3)×4;
=1+0×1+2+1×2+3+2×3+( ___________)
=(1+2+3+4)+(___________)
…
归纳结论:
=(1+0)×1+(1+1)×2+(1+2)×3+…[(1+(n-l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n
=(___________)+[ ___________]
= (__________)+( ___________)
=×(___________)
实践应用:
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是___。
.在一次课题设计活动中,小明对修建一座87m长的水库大坝提出了以下方案;大坝的横截面为等腰梯形,如图,∥,坝高10m,迎水坡面的坡度,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面的坡度进行修改,修改后的迎水坡面的坡度。
(1) 求原方案中此大坝迎水坡的长(结果保留根号)
(2) 如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿方向拓宽2.7m,求坝顶将会沿方向加宽多少米?
一些较大数值问题可以通过用字母代替数成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.
例: 若x=123456789×123456786,
y=123456788×123456787,
试比较x、y的大小.
解: 设123456788=a,
那么x=, y=
∵
∴x<y
看完后,你学到了这种方法吗?再亲自试一试吧,你准行!
(1)若x=234567×234568,y=234566×234569,比较比较x、y的大小
(2)计算:
如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中 所填整数之和都相等,则第2012个格子中的数为( )
3 |
a |
b |
c |
﹣1 |
|
|
|
2 |
|
… |
A.3 B.2 C.0 D.﹣1
(本小题8分)注意:为了使同学们更好她解答本题,我们提供了—种分析问题的方法,你可以依照这个方法按要求完成本题的解答.也可以选用其他方法,按照解答题的一班要求进行解答即可.
某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元.每天的销售额为y元.
(I) 分析:根据问题中的数量关系.用含x的式子填表:
(Ⅱ) (由以上分析,用含x的式子表示y,并求出问题的解)
如图,一轮船由B处向C处航行,在B处测得C处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,C在A的南偏东25°方向。若轮船行驶到C处,那么从C处看A,B两处的视角∠ACB是多少度?
把一块直尺与一块三角板如图放置,若,则∠2的度数为( )
A.120° | B.135° | C.145° | D.150° |
如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n的值是
A.48 | B.56 | C.63 | D.74 |
(本题10分)
在向红星镇居民介绍王家庄位置的时候,我们可以这样说:如图,在以红星镇为原点,正东方向为x轴正方向,正北方向为y轴正方向的平面直角坐标系(1单位长度表示的实际距离为1km)中,王家庄的坐标为(5,5);也可以说,王家庄在红星镇东北方向km的地方。
还有一种方法广泛应用于航海、航空、气象、军事等领域。如右下图:在红星镇所建的雷达站O的雷达显示屏上,把周角每15°分成一份,正东方向为0°,相邻两圆之间的距离为1个单位长度(1单位长度表示的实际距离为1km),现发现2个目标,我们约定用(10,15°)表示点M在雷达显示器上的坐标,则:
(1)点N可表示为 ;王家庄位置可表示为 ;点N关于雷达站点0成中心对称的点P的坐标为 ;
(2)S△OMP= ;
(3)若有一家大型超市A在图中(4,30°)的地方,请直接标出点A,并将超市A与雷达站O连接,现准备在雷达站周围建立便民服务店B,使得△ABO为底角30°的等腰三角形,请直接写出B点在雷达显示屏上的坐标.
甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( ▲ )
A.甲的速度是10km/h B.乙的速度是20km/h
C.乙出发h后与甲相遇 D.甲比乙晚到B地2h
试题篮
()