爱动脑筋的小明制造了一个小黑匣,只要你输入一个数字,它就输出另一个数来,好奇心强的小亮赶紧试试了一下,结果得到了下面的表格
输入 |
2 |
5 |
10 |
17 |
26 |
37 |
… |
输出 |
1 |
… |
聪明的你一定知道当输入的数是65时,输出的结果是
如图所示,是我们常用的一副三角板.请你用一副三角板画出度数分别为15°和135°的两个角.(要求:保留画图痕迹)
(2)
在下面的方格纸中经过点C画与线段AB互相平行 的直线l1,再经过点B画一条与线段AB垂直的直线l2.
某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?
我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭月使用塑料袋的数量,结果如下(单位:只):
65,70,85,75,85,79,74,91,81,95.
(1)计算这10名学生所在家庭平均月使用塑料袋多少只?
(2)“限塑令”执行后,家庭月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1 000名学生所在家庭月使用塑料袋可减少多少只?
某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
观察下列图形(每幅图中最小的三角形都是全等的),请写出第个图中最小的三角形的个数有 个.
(本题8分)如图,在梯形ABCD中,AD//BC,E是AD的中点,BC=5,AD=12,梯形高为4,∠A =45°,P为AD边上的动点.
(1)当PA的值为____________时,以点P、B、C、E为顶点的四边形为直角梯形;
(2)当PA的值为____________时,以点P、B、C、E为顶点的四边形为平行四边形;
(3)点P在AD边上运动的过程中,以P、B、C、E为顶点的四边形能否构成菱形?如果能,求出PA长.如果不能,也请说明理由.
如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为( )
|
|
如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是( )
A.10m | B.10m | C.15m | D.5m |
(本题6分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和.现以这组数中的各个数作为正方形的边长值构造如下正方形:
再分别依次从左到右取2个、3个、4个、5个…正方形拼成如下长方形并记为①、②、
序号 |
① |
② |
③ |
④ |
… |
周长 |
6 |
10 |
|
… |
③、④、 …相应长方形的周长如下表所示:
仔细观察图形,上表中的 , .
若按此规律继续作长方形,则序号为⑧的长方形周长是 。
为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.
(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?
(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?
(本题8分)如图,四边形ABCD是矩形,点O在矩形上方,点B绕着点O逆时针旋转后的对应点为点C.
(1)画出点A绕着点O逆时针旋转后的对应点E;
(2)连接CE,证明:CO平分∠ECD
(3)在(1)(2)的条件下,连接ED,猜想ED与CO的位置关系,并证明你的结论.
2012年3月5日上午9时,十一届全国人大五次会议在人民大会堂开幕。温家宝总理在全国人大会议的政府工作报告中指出,2012年国家财政性教育经费支出21984.63亿元,占国内生产总值4%以上。中央预算内投资用于教育的比重达到7%左右。将21984.63用四舍五入法取近数(精确到0.1)表示应为( )
A.21985 | B.21984.6 | C.21980 | D.21900 |
(本题6分)某市民广场地面铺设地砖,决定采用黑白2种地砖,按如下方案铺设,首先在广场中央铺2块黑色砖(如图①),然后在黑色砖的四周铺上白色砖(如图②),再在白色砖的四周铺上黑色砖(如图③,再在黑色砖的四周铺上白色砖(如图④)这样反复更换地砖的颜色,按照这种规律,直至铺满整个广场.观察下图,解决下列问题.
⑴ 填表
图形序号数 |
① |
② |
③ |
④ |
… |
地砖总数(包括黑白地砖) |
2 |
|
|
|
|
⑵ 按照这种规律第个图形一共用去地砖多少块?(用含的代数式表示)
试题篮
()