如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.
(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;
(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的体积: cm3.
(1)解方程:=
(2)小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子. 注意:只需添加一个符合要求的正方形,并用阴影表示.
回答下列问题:
(1)如图所示的甲、乙两个平面图形能折成什么几何体?_________________________
(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为,顶点个数为,棱数为,分别计算第(1)题中两个多面体的的值?你发现什么规律?
(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.
图(1)是正方体木块,把它切去一块,可能得到形如图(2)、(3)、(4)、(5)的木块。
我们知道,图(1)的正方体木块有8个顶点,12条棱,6个面,请你将图(2),(3),(4),(5)中木块的顶点数,棱数,面数填入下表:
图 |
顶点数 |
棱数 |
面数 |
(1) |
8 |
12 |
6 |
(2) |
|
|
|
(3) |
|
|
|
(4) |
|
|
|
(5) |
|
|
|
观察上表,请你归纳上述各种木块的顶点数,棱数,面数之间的数量关系,这种数量关系是:_______________
将长为1,宽为a的长方形纸片如图左那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图右那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作).
(1)第一次操作后,剩下的长方形的长和宽分别为多少?(用含a的代数式表示)
(2)第二次操作后,剩下的长方形的面积是多少?(列出代数式,不需化简)
(3)假如第二次操作后,剩下的长方形恰好是正方形,则a的值是多少?
一个正方体的六个面上分别标有1、2、3、4、5、6,根据图中从各个方向看到的数字,解答下面的问题:
(1)“?”处的数字是什么?
(2)每两个相对面上的数字分别是什么?
假如圆锥的体积一定,它的底面直径与高( )
A.成正比例 | B.成反比例 | C.不成比例 | D.无法确定 |
书籍是人类进步的阶梯!为爱护书一般都将书本用封皮包好.
问题1:现有精装词典长、宽、厚尺寸如图(1)所示(单位:cm),若按图(2)的包书方式,将封面和封底各折进去3cm.试用含a、b、c的代数式分别表示词典封皮(包书纸)的长是 cm,宽是 cm;
问题2:在如图(4)的矩形包书纸皮示意图中,虚线为折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长即为折叠进去的宽度.
(1)若有一数学课本长为26cm、宽为18.5cm、厚为1cm,小海宝用一张面积为1260cm2的矩形纸包好了这本数学书,封皮展开后如图(4)所示.若设正方形的边长(即折叠的宽度)为x cm,则包书纸长为 cm,宽为 cm(用含x的代数式表示).
(2)请帮小海宝列好方程,求出第(1)题中小正方形的边长x cm.
试题篮
()