优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学 / 试卷选题

专题21 几何三大变换问题之平移问题(压轴题)

(2014年广西来宾3分)将点P(﹣2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是(  )

A.(﹣5,﹣3) B.(1,﹣3) C.(﹣1,﹣3) D.(5,﹣3)
来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年广西玉林、防城港3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是(  )

A. B. C. D.
来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年湖南益阳4分)如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为(  )

A.1 B.1或5 C.3 D.5
来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年浙江台州4分)如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm,得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为(  )

A.4∶3 B.3∶2 C.14∶9 D.17∶9
来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(2013年青海西宁3分)如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为(  )

A. B. C. D.
来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年湖南邵阳3分)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动         次后该点到原点的距离不小于41.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年山东德州4分)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…An,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:
①抛物线的顶点M1,M2,M3,…Mn,…都在直线L:y=x上;
②抛物线依次经过点A1,A2,A3…An,….
则顶点M2014的坐标为(               ).

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年福建莆田14分)如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a.

(1)如图1,若m=
①当OC=2时,求抛物线C2的解析式;
②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;
(2)如图2,当OB=(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年甘肃天水12分)如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:
(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME的度数.
(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.
(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年广东广州14分)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.
(1)求抛物线的解析式和顶点C的坐标;
(2)当∠APB为钝角时,求m的取值范围;
(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首尾依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年广东深圳9分)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).

(1)求抛物线的解析式;
(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,
①求当△BEF与△BAO相似时,E点坐标;
②记平移后抛物线与AB另一个交点为G,则SEFG与SACD是否存在8倍的关系?若有请直接写出F点的坐标.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年广西贵港11分)如图,抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),连接BC.

(1)求该抛物线的解析式和对称轴,并写出线段BC的中点坐标;
(2)将线段BC先向左平移2个单位长度,在向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,求此时点C1的坐标和m的值;
(3)若点P是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C四点为顶点的四边形是平行四边形时,求此时点P的坐标.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年广西桂林12分)如图,已知抛物线y=ax2+bx+4与x轴交于A(,0)、B两点,与y轴交于C点,其对称轴为直线x=1.
(1)直接写出抛物线的解析式       
(2)把线段AC沿x轴向右平移,设平移后A、C的对应点分别为A′、C′,当C′落在抛物线上时,求A′、C′的坐标;
(3)除(2)中的点A′、C′外,在x轴和抛物线上是否还分别存在点E、F,使得以A、C、E、F为顶点的四边形为平行四边形,若存在,求出E、F的坐标;若不存在,请说明理由.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年广西玉林、防城港12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.
(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;
(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.
①求此抛物线的解析式;
②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年贵州贵阳12分)如图,经过点A(0,﹣6)的抛物线与x轴相交于B(﹣2,0),C两点.

(1)求此抛物线的函数关系式和顶点D的坐标;
(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;
(3)在(2)的结论下,新抛物线y1上是否存在点Q,使得△QAB是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年湖北鄂州12分)如图,在平面直角坐标系xOy中,一次函数的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C两点,并与x轴正半轴交于点B.
(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.
(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值?请说明理由.
(3)将抛物线C1作适当平移,得到抛物线C2,h>1.若当1<x≤m时,y2≥﹣x恒成立,求m的最大值.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年湖北宜昌12分)如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t, 0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.

(1)填空:△AOB≌△        ≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,       
(2)求点C的坐标,并用含a,t的代数式表示b;
(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;
(4)当抛物线开口向上,对称轴是直线,顶点随着t的增大向上移动时,求t的取值范围.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年湖北十堰12分)已知抛物线C1的顶点为A,且经过点B(﹣2,﹣1).

(1)求A点的坐标和抛物线C1的解析式;
(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求SOAC:SOAD的值;
(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相似?若存在,求出直线m的解析式;若不存在,说明理由.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年湖北江汉油田、潜江、天门、仙桃10分)如图①,△ABC与△DEF是将△ACF沿过A点的某条直线剪开得到的(AB,DE是同一条剪切线).平移△DEF使顶点E与AC的中点重合,再绕点E旋转△DEF,使ED,EF分别与AB,BC交于M,N两点.
(1)如图②,△ABC中,若AB=BC,且∠ABC=90°,则线段EM与EN有何数量关系?请直接写出结论;
(2)如图③,△ABC中,若AB=BC,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;
(3)如图④,△ABC中,若AB:BC=m:n,探索线段EM与EN的数量关系,并证明你的结论.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年湖南衡阳10分)如图,已知直线AB分别交x轴、y轴于点A(﹣4,0)、B(0,3),点P从点A出发,以每秒1个单位的速度沿直线AB向点B移动,同时,将直线以每秒0.6个单位的速度向上平移,分别交AO、BO于点C、D,设运动时间为t秒(0<t<5).
(1)证明:在运动过程中,四边形ACDP总是平行四边形;
(2)当t取何值时,四边形ACDP为菱形?且指出此时以点D为圆心,以DO长为半径的圆与直线AB的位置关系,并说明理由.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年湖南怀化10分)如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y.
(1)求y与x之间的函数关系式;
(2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B三点的抛物线的解析式;
(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年江苏苏州9分)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=4 cm,AD=4cm.若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).
(1)如图①,连接OA,AC,则∠OAC的度数为    °;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年江苏盐城12分)如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,﹣1),另一顶点B坐标为(﹣2,0),已知二次函数的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A′D′∥y轴且经过点B,直尺沿x轴正方向平移,当A′D′与y轴重合时运动停止.
(1)求点C的坐标及二次函数的关系式;
(2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN长度的最大值;
(3)如图②,设点P为直尺的边A′D′上的任一点,连接PA、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当时,线段PA、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.
(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.)

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(2014年江西抚州10分)如图,抛物线y=ax2+2ax(a<0)位于x轴上方的图象记为F1,它与x轴交于P1、O两点,图象F2与F1关于原点O对称,F2与x轴的另一个交点为P2,将F1与F2同时沿x轴向右平移P1P2的长度即可得到F3与F4;再将F3与F4同时沿x轴向右平移P12P的长度即可得到F5与F6;…;按这样的方式一直平移下去即可得到一系列图象F1,F2,…,Fn.我们把这组图象称为“波浪抛物线”.
(1)当a=﹣1时,①求图象F1的顶点坐标;②点H(2014,﹣3)        (填“在”或“不在”)该“波浪抛物线”上;若图象Fn的顶点Tn的横坐标为201,则图象Fn对应的解析式为        ,其自变量x的取值范围为       
(2)设图象Fn、Fn+1的顶点分别为Tn、Tn+1(m为正整数),x轴上一点Q的坐标为(12,0).试探究:当a为何值时,以O、Tn、Tn+1、Q四点为顶点的四边形为矩形?并直接写出此时m的值.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年辽宁鞍山14分)如图,在平面直角坐标系中,将抛物线先向右平移1个单位,再向下平移个单位,得到新的抛物线,该抛物线与y轴交于点B,与 x轴正半轴交于点C.
(1)求点B 和点C的坐标;
(2)如图1,有一条与 y轴重合的直线l向右匀速平移,移动的速度为每秒1个单位,移动的时间为t秒,直线l与抛物线交于点P. 当点P在x轴上方时,求出使△PBC的面积为的t值;
(3)如图 2,将直线 BC绕点B逆时针旋转,与x轴交于点M(1,0),与抛物线交于点 A,在 y 轴上有一点D. 在x轴上另取两点E、F(点E在点F的左侧)EF=2,线段EF在x轴上平移,当四边形ADEF的周长最小时,先简单描述如何确定此时点E的位置?再直接写出点 E的坐标.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年辽宁阜新12分)已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.
(1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想;
(2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由;
(3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知

(年辽宁锦州14分)如图,平行四边形ABCD在平面直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(0,4),抛物线y=﹣x2+mx+n经过点A和C.
(1)求抛物线的解析式.
(2)该抛物线的对称轴将平行四边形ABCO分成两部分,对称轴左侧部分的图形面积记为S1,右侧部分图形的面积记为S2,求S1与S2的比.
(3)在y轴上取一点D,坐标是(0,),将直线OC沿x轴平移到O′C′,点D关于直线O′C′的对称点记为D′,当点D′正好在抛物线上时,求出此时点D′坐标并直接写出直线O′C′的函数解析式.

来源:专题21 几何三大变换问题之平移问题(压轴题)
  • 题型:未知
  • 难度:未知