优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:中等
  • 人气:1550

(2014年江西抚州10分)如图,抛物线y=ax2+2ax(a<0)位于x轴上方的图象记为F1,它与x轴交于P1、O两点,图象F2与F1关于原点O对称,F2与x轴的另一个交点为P2,将F1与F2同时沿x轴向右平移P1P2的长度即可得到F3与F4;再将F3与F4同时沿x轴向右平移P12P的长度即可得到F5与F6;…;按这样的方式一直平移下去即可得到一系列图象F1,F2,…,Fn.我们把这组图象称为“波浪抛物线”.
(1)当a=﹣1时,①求图象F1的顶点坐标;②点H(2014,﹣3)        (填“在”或“不在”)该“波浪抛物线”上;若图象Fn的顶点Tn的横坐标为201,则图象Fn对应的解析式为        ,其自变量x的取值范围为       
(2)设图象Fn、Fn+1的顶点分别为Tn、Tn+1(m为正整数),x轴上一点Q的坐标为(12,0).试探究:当a为何值时,以O、Tn、Tn+1、Q四点为顶点的四边形为矩形?并直接写出此时m的值.

登录免费查看答案和解析

(2014年江西抚州10分)如图,抛物线yax22ax(a<