2015年全国统一高考理科数学试卷(全国Ⅰ卷)
投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )
A. | 0.648 | B. | 0.432 | C. | 0.36 | D. | 0.312 |
已知 是双曲线 上的一点, 是 上的两个焦点,若 ,则 的取值范围是( )
A. | B. | ||
C. | D. |
《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:"今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?"其意思为:"在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )
A. | 14斛 | B. | 22斛 | C. | 36斛 | D. | 66斛 |
圆柱被一个平面截去一部分后与半球(半径为
)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为
,则
( )
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
设函数 ,其中 ,若存在唯一的整数 ,使得 ,则 的取值范围是()
A. | B. | B. | C. | D. |
如图,四边形
为菱形,
=120°,
是平面
同一侧的两点,
⊥平面
,
⊥平面
,
,
.
(Ⅰ)证明:平面
⊥平面
;
(Ⅱ)求直线
与直线
所成角的余弦值.
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近8年的年宣传费
和年销售量
(
=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
46.6 |
56.3 |
6.8 |
289.8 |
1.6 |
1469 |
108.8 |
表中,=
(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利率的预报值最大?
附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:
在直角坐标系
中,曲线
与直线
交与
两点,
(Ⅰ)当
时,分别求
在点
和
处的切线方程;
(Ⅱ)
轴上是否存在点
,使得当
变动时,总有
?说明理由.
已知函数
.
(Ⅰ)当
为何值时,
轴为曲线
的切线;
(Ⅱ)用
表示
中的最小值,设函数
,讨论
)零点的个数.
选修4-1:几何证明选讲
如图, 是 的直径, 是 的切线, 交 于 .
(Ⅰ)若 为 的中点,证明: 是 的切线;
(Ⅱ)若 ,求 的大小.
选修4-4:坐标系与参数方程
在直角坐标系
中,直线
,圆
,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系.
(Ⅰ)求
,
的极坐标方程;
(Ⅱ)若直线
的极坐标方程为
,设
与
的交点为
,
 ,求
的面积.