[广东]2013届广东省揭阳市高三3月第一次高考模拟理科数学试卷
在四边形ABCD中,“,且”是“四边形ABCD是菱形”的
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
当时,函数取得最小值,则函数
A.是奇函数且图像关于点对称 |
B.是偶函数且图像关于点对称 |
C.是奇函数且图像关于直线对称 |
D.是偶函数且图像关于直线对称 |
一简单组合体的三视图及尺寸如图示(单位:)则该组合体的体积为.
A.72000 | B.64000 |
C.56000 | D.44000 |
已知等差数列满足,,则前n项和取最大值时,n的值为
A.20 | B.21 | C.22 | D.23 |
若二项式的展开式中,第4项与第7项的二项式系数相等,则展开式中的系数为 .(用数字作答)
一般来说,一个人脚掌越长,他的身高就越高,现对10名成年人的脚掌长与身高进行测量,得到数据(单位均为)如表,作出散点图后,发现散点在一条直线附近,经计算得到一些数据:,;某刑侦人员在某案发现场发现一对裸脚印,量得每个脚印长为,则估计案发嫌疑人的身高为
.
脚长 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
身高 |
141 |
146 |
154 |
160 |
169 |
176 |
181 |
188 |
197 |
203 |
函数的定义域为D,若对任意的、,当时,都有,则称函数在D上为“非减函数”.设函数在上为“非减函数”,且满足以下三个条件:(1);(2);(3),则 、 .
如图所示,AB是⊙O的直径,过圆上一点E作切线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.若CB=2,CE=4,则AD的长为 .
(本小题满分12分)
在中,角所对的边分别为,且满足.
(1)求角的大小;
(2)求的最大值,并求取得最大值时角的大小.
(本小题满分12分)
根据公安部最新修订的《机动车驾驶证申领和使用规定》:每位驾驶证申领者必须通过《科目一》(理论科目)、《综合科》(驾驶技能加科目一的部分理论)的考试.已知李先生已通过《科目一》的考试,且《科目一》的成绩不受《综合科》的影响,《综合科》三年内有5次预约考试的机会,一旦某次考试通过,便可领取驾驶证,不再参加以后的考试,否则就一直考到第5次为止.设李先生《综合科》每次参加考试通过的概率依次为0.5,0.6,0.7,0.8,0.9.
(1)求在三年内李先生参加驾驶证考试次数的分布列和数学期望;
(2)求李先生在三年内领到驾驶证的概率.
(本小题满分14分)
如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,,现将梯形沿CB、DA折起,使且,得一简单组合体如图2示,已知分别为的中点.
图1 图2
(1)求证:平面;
(2)求证:;
(3)当多长时,平面与平面所成的锐二面角为?
(本小题满分14分)
如图,设点、分别是椭圆的左、右焦点,为椭圆上任意一点,且最小值为.
(1)求椭圆的方程;
(2)若动直线均与椭圆相切,且,试探究在轴上是否存在定点,点到的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.
(本小题满分14分)
已知函数为常数,数列满足:,,.
(1)当时,求数列的通项公式;
(2)在(1)的条件下,证明对有:;
(3)若,且对,有,证明:.