2011年初中毕业升学考试(江苏宿迁卷)数学
如图所示,过点F(0,1)的直线y=kx+b与抛物线交于M(x1,y1)
和N(x2,y2)两点(其中x1<0,x2<0).
⑴求b的值.
⑵求x1•x2的值
⑶分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论.
⑷对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请法度出这条直线m的解析式;如果没有,请说明理由.
下列运算中,一定正确的是
A.m5-m2=m3 B.m10÷m2=m5 C. m?m2=m3 D.(2m)5=2m5
下列说法中,正确的是
A.为检测我市正在销售的酸奶质量,应该采用抽样调查的方式
B.在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定
C.某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%
D.“2012年将在我市举办全运会,这期间的每一天都是晴天”是必然事件.
如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有
A.2个 B.4个 C.6个 D.8个
小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得
A. B.
C. D.
小窦将本班学生上学方式的调查结果绘制成如图所示的统计图,若步行上学的学生有27人,则骑车上学的学生有__________人.
.如图,在□ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若∠EBF=45°,则∠EDF的度数是__________度.
宁宁同学设计了一个计算程序,如下表
输入数据 |
1 |
2 |
3 |
4 |
5 |
…… |
输出数据 |
a |
…… |
根据表格中的数据的对应关系,可得a的值是________
如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结
△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,
其中正确的是____________________________(只填写序号).
沈阳地铁一号线的开通运行给沈阳市民的出行方式带来了一些变化.小王和小林
准备利用课余时间,以问卷的方式对沈阳市民的出行方式进行调查.如图是沈阳地铁一号线
图(部分),小王和小林分别从太原街站(用A表示)、南市场站(用B表示)、青年大街站
(用C表示)这三站中,随机选取一站作为调查的站点.
⑴在这三站中,小王选取问卷调查的站点是太原街站的概率是多少?(请直接写出结果)
⑵请你用列表法或画树状图(树形图)法,求小王选取问卷调查的站点与小林选取问卷调查的站点相邻的概率.(各站点用相应的英文字母表示)
.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.
⑴求∠DAC的度数;
⑵求证:DC=AB
.某班数学兴趣小组收集了本市4月份30天的日最高气温的数据,经过统计分析
获得了两条信息和一个统计表
信息1 4月份日最高气温的中位数是15.5℃;
信息2 日最高气温是17℃的天数比日最高气温是18℃的天数多4天.
4月份日最高气温统计表
气温℃ |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
天数/天 |
2 |
3 |
※ |
5 |
4 |
※ |
※ |
2 |
2 |
3 |
请根据上述信息回答下列问题:
⑴4月份最高气温是13℃的有________天,16℃的有_______天,17℃的有__________天.
⑵4月份最高气温的众数是________℃,极差是_________℃。
.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.
⑴求证:AC=CD
⑵若AC=2,AO=,求OD的长度.
小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=,sinA′=.
⑴求此重物在水平方向移动的距离BC;
⑵求此重物在竖直方向移动的距离B′C.(结果保留根号)
一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量
2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的
成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,
则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).
⑴用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.
⑵求今年这种玩具的每件利润y元与x之间的函数关系式.
⑶设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?
注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.
已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以
AD为边作菱形ADEF,使∠DAF=60°,连接CF.
⑴如图1,当点D在边BC上时,
求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
⑵如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
⑶如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y
轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.
⑴求抛物线的函数表达式;
⑵求直线BC的函数表达式;
⑶点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.
①当线段PQ=AB时,求tan∠CED的值;
②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.
温馨提示:考生可以根据第⑶问的题意,在图中补出图形,以便作答.
在平面直角坐标中,点M(-2,3)在( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针
固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个
扇形区域内为止),则指针指在甲区域内的概率是( )
A.1 | B. | C. | D. |
已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A.a>0 | B.当x>1时,y随x的增大而增大 |
C.c<0 | D.3是方程ax2+bx+c=0的一个根 |
将一块直角三角形纸片ABC折叠,使点A与点C重合,展开后平铺在桌面上(如
图所示).若∠C=90°,BC=8cm,则折痕DE的长度是 cm.
某校为鼓励学生课外阅读,制定了“阅读奖励方案”.方案公布后,随机征求了
100名学生的意见,并对持“赞成”、“反对”、“弃权”三种意见的人数进行统计,绘制成如
图所示的扇形统计图.若该校有1000名学生,则赞成该方案的学生约有 人.
如图,把一个半径为12cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作
成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是 cm.
在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,
使A与坐标原点O重合,则B平移后的坐标是 .
如图,在梯形ABCD中,AB∥DC,∠ADC的平分线与∠BDC的平分线的交点E
恰在AB上.若AD=7cm,BC=8cm,则AB的长度是 cm.
如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所
围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是 m(可利用的围墙长
度超过6m).
如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,
连接BC.若∠A=26°,则∠ACB的度数为 .
一个边长为16m的正方形展厅,准备用边长分别为1m和0.5m的两种正方形地
板砖铺设其地面.要求正中心一块是边长为1m的大地板砖,然后从内到外一圈小地板砖、
一圈大地板砖相间镶嵌(如图所示),则铺好整个展厅地面共需要边长为1m的大地板砖
块.
省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对
他们进行了六次测试,测试成绩如下表(单位:环):
|
第一次 |
第二次 |
第三次 |
第四次 |
第五次 |
第六次 |
甲 |
10 |
8 |
9 |
8 |
10 |
9 |
乙 |
10 |
7 |
10 |
10 |
9 |
8 |
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:s2=[])
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自
A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处
测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取
=1.732,结果精确到1m)
在一个不透明的布袋中装有相同的三个小球,其上面分别标注
数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回
袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.
(1)写出点M坐标的所有可能的结果;
(2)求点M在直线y=x上的概率;
(3)求点M的横坐标与纵坐标之和是偶数的概率.
某通讯公司推出①、②两种通讯收费方式供用户选择,其中一
种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间
的函数关系如图所示.
(1)有月租费的收费方式是 (填①或②),
月租费是 元;
(2)分别求出①、②两种收费方式中y与自
变量x之间的函数关系式;
(3)请你根据用户通讯时间的多少,给出
经济实惠的选择建议.
如图,在平面直角坐标系中,O为坐标原点,P是反比例函数
y=(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、
B.
(1)判断P是否在线段AB上,并说明理由;
(2)求△AOB的面积;
(3)Q是反比例函数y=(x>0)图象上异于点P的另一点,请以Q为圆心,QO
半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.
如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.
(1)当t≠1时,求证:△PEQ≌△NFM;
(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.