高考数学全程总复习课时提升作业五十六第八章第七节练习卷
若抛物线y2=2px(p>0)的焦点在圆x2+y2+2x-3=0上,则p=( )
A. | B.1 | C.2 | D.3 |
设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是( )
A.4 | B.6 | C.8 | D.12 |
已知直线y=k(x+1)与抛物线C:y2=4x相交于A,B两点,F为抛物线C的焦点,若|FA|=2|FB|,则k=( )
A.± | B.± |
C.± | D. |
已知抛物线y2=2px(p>0)上的一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为( )
A. | B. | C. | D. |
过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线共有( )
A.1条 | B.2条 | C.3条 | D.4条 |
直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形APQB的面积为( )
A.48 | B.56 | C.64 | D.72 |
若双曲线-=1(a>b>0)的左、右焦点分别为F1,F2,线段F1F2被抛物线x=y2的焦点分成3∶2的两段,则此双曲线的离心率为( )
A. | B. |
C. | D. |
已知M是y=x2上一点,F为抛物线的焦点.A在C:(x-1)2+(y-4)2=1上,则|MA|+|MF|的最小值为( )
A.2 | B.4 | C.8 | D.10 |
以抛物线x2=16y的焦点为圆心,且与抛物线的准线相切的圆的方程为_________.
如图,抛物线C1:y2=4x和圆C2:(x-1)2+y2=1,直线l经过C1的焦点F,依次交C1,C2于A,B,C,D四点,则·的值是 .
已知直线y=-2上有一个动点Q,过点Q作直线l1垂直于x轴,动点P在l1上,且满足OP⊥OQ(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程.
(2)若直线l2是曲线C的一条切线,当点(0,2)到直线l2的距离最短时,求直线l2的方程.
如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(1)求实数b的值.
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.