上海市松江区高三三模冲刺理科数学试卷
某小组中有6名女同学和4名男同学,从中任意挑选3名同学组成环保志愿者宣传队,则这个宣传队由2名女同学和1名男同学组成的概率是 (结果用分数表示).
若等差数列的首项为
公差为
,前
项的和为
,则数列
为等差数列,且通项为
.类似地,请完成下列命题:若各项均为正数的等比数列
的首项为
,公比为
,前
项的积为
,则 .
平面直角坐标系中,如果与
都是整数,就称点
为整点,命题:
①存在这样的直线,既不与坐标轴平行又不经过任何整点;
②如果与
都是无理数,则直线
不经过任何整点;
③如果与
都是有理数,则直线
必经过无穷多个整点;
④如果直线经过两个不同的整点,则
必经过无穷多个整点;
⑤存在恰经过一个整点的直线;
其中的真命题是 (写出所有真命题编号).
在极坐标系中,圆C过极点,且圆心的极坐标是(
),则圆C的极坐标方程是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
若,则称点
在抛物线C:
外.已知点
在抛物线C:
外,则直线
与抛物线C的位置关系是( )
A.相交 | B.相切 | C.相离 | D.不能确定 |
在正方体AC1中,若点P在对角线AC1上,且P点到三条棱CD 、A1D1、 BB1的距离都相等,则这样的点共有 ( )
A.1 个 B.2 个 C.3 个 D.无穷多个
如图,直三棱柱的底面
是等腰直角三角形,
,侧棱
底面
,且
,
是
的中点,
是
上的点.
(1)求异面直线与
所成角
的大小(结果用反三角函数表示);
(2)若,求线段
的长.
电视传媒为了解某市100万观众对足球节目的收视情况,随机抽取了100名观众进行调查.如图是根据调查结果绘制的观众每周平均收看足球节目时间的频率分布直方图,将每周平均收看足球节目时间不低于1.5小时的观众称为“足球迷”,并将其中每周平均收看足球节目时间不低于2.5小时的观众称为“铁杆足球迷”.
(1)试估算该市“足球迷”的人数,并指出其中“铁杆足球迷”约为多少人;
(2)该市要举办一场足球比赛,已知该市的足球场可容纳10万名观众.根据调查,如果票价定为100元/张,则非“足球迷”均不会到现场观看,而“足球迷”均愿意前往现场观看.如果票价提高元/张
,则“足球迷”中非“铁杆足球迷”愿意前往观看的人数会减少
,“铁杆足球迷”愿意前往观看的人数会减少
.问票价至少定为多少元/张时,才能使前往现场观看足球比赛的人数不超过10万人?
已知点是椭圆
上任一点,点
到直线
的距离为
,到点
的距离为
,且
.直线
与椭圆
交于不同两点
、
(
,
都在
轴上方),且
.
(1)求椭圆的方程;
(2)当为椭圆与
轴正半轴的交点时,求直线
方程;
(3)对于动直线,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.