若正项数列满足条件:存在正整数,使得对一切都成立,则称数列为级等比数列.
(1)已知数列为2级等比数列,且前四项分别为,求的值;
(2)若为常数),且是级等比数列,求所有可能值的集合,并求取最小正值时数列的前项和;
(3)证明:为等比数列的充要条件是既为级等比数列,也为级等比数列.
相关知识点
推荐试卷
若正项数列满足条件:存在正整数,使得对一切都成立,则称数列为级等比数列.
(1)已知数列为2级等比数列,且前四项分别为,求的值;
(2)若为常数),且是级等比数列,求所有可能值的集合,并求取最小正值时数列的前项和;
(3)证明:为等比数列的充要条件是既为级等比数列,也为级等比数列.
试题篮
()