数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF = 90°,且EF交正方形外角∠DCG的平行线CF于点F , 求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB的中点M,连结ME,则AM = EC,
易证△AME≌△ECF,所以AE = EF . 在此基础上,同学们作了进一步的研究:
小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE = EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由
小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE = EF ”仍然成立. 你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
相关知识点
推荐试卷