优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:中等
  • 人气:1327

阅读材料:如图(1),△ABC的周长为L,内切圆O的半径为r,连结OA,OB,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积.
∵S△ABC =S△OAB +S△OBC +S△OCA
又∵S△OAB =AB·r,S△OBC =BC·r,S△OCA =AC·r
∴S△ABC =AB·r+BC·r+CA·r
=L·r(可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5,12,13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(2)且面积为S,各边长分别为a,b,c,d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1,a2,a3,…an,合理猜想其内切圆半径公式(不需说明理由).

登录免费查看答案和解析

阅读材料:如图(1),△ABC的周长为L,内切圆O的半径为r