优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:较难
  • 人气:873

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。
(1)思路梳理
∵AB=CD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。
∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线。
根据__ __________,易证△AFG≌_   _______,得EF=BE+DF。
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系_        ___时,仍有EF=BE+DF。
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。
 

登录免费查看答案和解析

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的