优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题 / 初中数学 / 试题详细
  • 科目:数学
  • 题型:解答题
  • 难度:中等
  • 人气:125

问题提出:

如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为ab的矩形,被分成a×b个边长为1的小正方形,其中a2b2,且ab为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?

问题探究:

为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.

探究一:

把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.

探究二:

把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图④,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法.

探究三:

把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图⑤,在a×2的方格纸中,共可以找到 (a-1) 个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有  种不同的放置方法.

探究四:

把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图⑥,在a×3的方格纸中,共可以找到  个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有  种不同的放置方法.

问题解决:

把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)

问题拓展:

如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为abc(a2b2c2,且abc是正整数)的长方体,被分成了a×b×c个棱长为1的小立方体.在图⑧的不同位置共可以找到  个图⑦这样的几何体.

登录免费查看答案和解析

问题提出:如图,图①是一张由三个边长为1的小正方形组成的L形