如图,在 中, , ,点 为 的中点, ,将 绕点 顺时针旋转 度 ,角的两边分别交直线 于 、 两点,设 、 两点间的距离为 , , 两点间的距离为 .
小涛根据学习函数的经验,对函数 随自变量 的变化而变化的规律进行了探究.
下面是小涛的探究过程,请补充完整.
(1)列表:下表的已知数据是 , 两点间的距离 进行取点、画图、测量,分别得到了 与 的几组对应值:
|
0 |
0.30 |
0.50 |
1.00 |
1.50 |
2.00 |
2.50 |
|
3.00 |
3.50 |
3.68 |
3.81 |
3.90 |
3.93 |
4.10 |
|
|
2.88 |
2.81 |
2.69 |
2.67 |
2.80 |
3.15 |
|
3.85 |
5.24 |
6.01 |
6.71 |
7.27 |
7.44 |
8.87 |
请你通过计算,补全表格;
(2)描点、连线,在平面直角坐标系 中,描出表格中各组数值所对应的点 ,并画出函数 关于 的图象.
(3)探究性质:随着自变量 的不断增大,函数 的变化趋势: .
(4)解决问题:当 时, 的长度大约是 .(保留两位小数).
相关知识点
推荐试卷