某物体牵引穿过打点计时器的纸带运动,计时器每隔T=0.02s打出一点,从纸带上已测得连续8个时间间隔T内的位移,如图所示,AB=5.62cm,BC=5.23cm,CD=4.85cm,DE=4.47cm,EF=4.08cm,FG=3.70cm,GH=3.31cm,HI=2.92cm。(结果保留三位有效数字)
①这是不是匀变速运动?根据什么? 。
②若是匀变速直线运动,则物体的加速度a的大小为 m/s2。
③B点的瞬时速度υB= m/s。
一个做变速直线运动的物体,加速度逐渐减小到零,那么该物体的运动情况可能是( )
A.速度不断增大,到加速度为零时,速度达到最大,而后做匀速直线运动 |
B.速度不断增大,到加速度减为零时,物体停止运动 |
C.速度不断减小到零,然后又相反方向做加速运动,而后物体做匀速直线运动 |
D.速度不断减小,到加速度为零时速度减到最小,而后物体做匀速直线运动. |
对做匀变速直线运动的物体,下列说法正确的是( )
A.在1 s内、2 s内、3 s内物体通过的位移之比是1∶3∶5 |
B.一质点的位置坐标函数是x=4t+2t2,则它运动的初速度是4 m/s,加速度是2 m/s2 |
C.做匀减速直线运动的物体,位移一定随时间均匀减小 |
D.任意两个连续相等时间间隔内物体的位移之差都相等 |
一小球从静止开始做匀加速直线运动,在第15s内的位移比第14s内的位移多0.2m,则下列说法正确的是( )
A.小球加速度为0.2m/s2 |
B.小球第15s内的位移为2.9m |
C.小球第14s的初速度为2.6m/s |
D.小球前15s内的平均速度为3.0m/s |
如图,将质量m=2kg的圆环套在与水平面成角的足够长直杆上,直杆固定不动,环的直径略大于杆的截面直径,杆上依次有三点A、B、C,sAB=8m,sBC=0.6m,环与杆间动摩擦因数,对环施加一个与杆成斜向上的拉力F,使环从A点由静止开始沿杆向上运动。已知t=4s时环到达B点.重力加速度g=10m/s2,。
(1)求F的大小;
(2)若到达B点时撤去力F,求此环到达C点所用的时间.
甲、乙两辆汽车在平直公路上行驶,它们的位移x随时间t变化的关系图线分别如图中甲、乙所示,图线甲为直线且与x轴交点坐标为(0,2m),图线乙为过坐标原点的抛物线,两图线交点的坐标为P(2m,4m)。下列说法正确的是
A.甲车做匀加速直线运动 |
B.乙车速度越来越大 |
C.t=2s时刻甲、乙两车速率相等 |
D.0~2s内甲、乙两车发生的位移相等 |
如图甲所示是一打桩机的简易模型。质量m=1kg的物体在拉力F作用下从与钉子接触处由静止开始运动,上升一段高度后撤去F,到最高点后自由下落,撞击钉子,将钉子打入一定深度。物体上升过程中,机械能E与上升高度h的关系图象如图乙所示。不计所有摩擦,g取10m/s2。求:
(1)物体上升1 m后再经多长时间才撞击钉子(结果可保留根号);
(2)物体上升到0.25m高度处拉力F的瞬时功率。
“30m折返跑”中.在平直的跑道上,一学生站立在起点线处,当听到起跑口令后(测试员同时开始计时),跑向正前方30m处的折返线,到达折返线处时,用手触摸固定的折返处的标杆,再转身跑回起点线,到达起点线处时,停止计时,全过程所用时间即为折返跑的成绩.学生可视为质点,加速或减速过程均视为匀变速,触摸杆的时间不计.该学生加速时的加速度大小为a1=2.5m/s2,减速时的加速度大小为a2=5m/s2,到达折返线处时速度需减小到零,并且该学生全过程最大速度不超过Vm=12m/s.求该学生“30m折返跑”的最好成绩.
如图所示是一个质点做匀变速直线运动x-t图像中的一段,从图中所给的数据可以确定
A.质点经过途中P点所对应位置时的速度等于2m/s |
B.质点在运动过程中在3s~3.5s这段时间内位移大于1m |
C.质点在运动过程中在3s~3.5s这段时间内位移小于1m |
D.质点在运动过程中t=3.5s时的速度等于2m/s |
某物体沿一直线运动,其v-t图象如图所示,则下列说法中正确的是( )
A.第2s内和第3s内的速度方向相反 |
B.第2s内和第3s内的加速度方向相反 |
C.第3s内速度方向与加速度方向相反 |
D.第5s内速度方向与加速度方向相反 |
某人在静止的湖面上竖直上抛一小铁球,小铁球上升到最高点后自由下落,穿过湖水并陷入湖底的淤泥中一段深度.不计空气阻力,取向上为正方向,在下边v-t图象中,最能反映小铁球运动过程的速度—时间图线是 ( )
汽车刹车后开始做匀减速运动,第1s内和第2s内的位移分别为3m和2m,那么从2s末开始,汽车还能继续向前滑行的最大距离是 ( )
A.1.5m | B.1.25m | C.1.125m | D.1m |
一个质点做直线运动,原来v>0,a>0,x>0,从某时刻开始把加速度均匀减小至零,则
A.速度一直增大,直至加速度为零为止 |
B.速度逐渐减小,直至加速度为零为止 |
C.位移一直增大,直至加速度为零为止 |
D.位移逐渐减小,直至加速度为零为止 |
.(多选)如图所示,间距l=0.4m的光滑平行金属导轨与水平面夹角θ=30°,正方形区域abcd内匀强磁场的磁感应强度B=0.2T,方向垂直于斜面.甲、乙两金属杆电阻R相同、质量均为m=0.02kg,垂直于导轨放置.起初,甲金属杆处在磁场的上边界ab上,乙在甲上方距甲也为l处.现将两金属杆同时由静止释放,并同时在甲金属杆上施加一个沿着导轨的拉力F,使甲金属杆始终以a=5m/s2的加速度沿导轨匀加速运动,已知乙金属杆刚进入磁场时做匀速运动,取g=10 m/s2,则
A.甲金属杆在磁场中运动的时间是0.4s |
B.每根金属杆的电阻R=0.016Ω |
C.甲金属杆在磁场中运动过程中F的功率逐渐增大 |
D.乙金属杆在磁场中运动过程中安培力的功率是0.1W |
图中a、b所示是一辆质量为6.0×103kg的公共汽车在t=0和t=5.0s末两个时刻的两张照片。当t=0时,汽车刚启动(汽车的运动可看成匀加速直线运动)。图c是车内横杆上悬挂的拉手环经放大后的图像,θ约为30°。根据题中提供的信息,能估算出的物理量有( )
A.汽车的长度 |
B.5.0s末汽车牵引力的功率 |
C.5.0s内合外力对汽车所做的功 |
D.5.0s末汽车的速度 |
试题篮
()