为了使粒子经过一系列的运动后,又以原来的速率沿相反方向回到原位,可设计如下的一个电磁场区域(如图所示):水平线QC以下是水平向左的匀强电场,区域Ⅰ(梯形PQCD)内有垂直纸面向里的匀强磁场,磁感应强度为B;区域Ⅱ(三角形APD)内的磁场方向与Ⅰ内相同,但是大小可以不同,区域Ⅲ(虚线PD之上、三角形APD以外)的磁场与Ⅱ内大小相等、方向相反.已知等边三角形AQC的边长为2l,P、D分别为AQ、AC的中点.带正电的粒子从Q点正下方、距离Q点为l的O点以某一速度射出,在电场力作用下从QC边中点N以速度v0垂直QC射入区域Ⅰ,再从P点垂直AQ射入区域Ⅲ,又经历一系列运动后返回O点.(粒子重力忽略不计)求:
(1)该粒子的比荷.
(2)粒子从O点出发再回到O点的整个运动过程所需时间.
(16分)如图所示,在矩形ABCD区域内,对角线BD以上的区域存在有平行于AD向下的匀强电场,对角线BD以下的区域存在有垂直于纸面的匀强磁场(图中未标出),矩形AD边长为L,AB边长为2L.一个质量为m、电荷量为+q的带电粒子(重力不计)以初速度v0从A点沿AB方向进入电场,在对角线BD的中点P处进入磁场,并从DC边上以垂直于DC边的速度离开磁场(图中未画出),求:
(1)带电粒子经过P点时速度v的大小和方向;
(2)电场强度E的大小;
(3)磁场的磁感应强度B的大小和方向.
如图所示,在倾角为θ的绝缘斜面上,有相距为L的A、B两点,分别固定着两个带电量均为Q的正点电荷。O为AB连线的中点,a、b是AB连线上两点,其中。一质量为m、电荷量为+q的小滑块(可视为质点)以初动能从a点出发,沿AB直线向b点运动,其中小滑块第一次经过O点时的动能为,第一次到达b点时的动能恰好为零,已知静电力常量为。求:
(1)两个带电量均为Q的正点电荷在a点处的合场强大小和方向;
(2)小滑块由a点向b点运动的过程中受到的滑动摩擦力大小;
(3)aO两点间的电势差。
如图所示,两金属杆AB和CD长均为L,电阻均为R,质量分别为3m和m。用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧。在金属杆AB下方有高度为H的匀强磁场,磁感应强度大小为B,方向与回路平面垂直,此时,CD处于磁场中。现从静止开始释放金属杆AB,经过一段时间,AB即将进入磁场的上边界时,其加速度为零,此时金属杆CD尚未离开磁场,这一过程中杆AB产生的焦耳热为Q。则
(1)AB棒刚达到磁场边界时的速度v1多大?
(2)此过程中金属杆CD移动的距离h和通过导线截面的电量q分别是多少?
(3)通过计算说明金属杆AB在磁场中可能具有的速度大小v2在什么范围内;
(4)试分析金属杆AB在穿过整个磁场区域过程中可能出现的运动情况(加速度与速度的变化情况)。
如图甲所示,建立x0y坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为L,第Ⅰ、Ⅳ象限分布着匀强磁场,方向垂直于x0y平面向里。位于极板左侧的粒子源可沿x轴向右发射质量为m、电量为q、速度相同、重力不计的带正电粒子。在0~3t0时间内两极板所加电压如图乙所示。已知,若粒子在t=0时刻射入,将恰好在t0时刻经极板边缘射入磁场。上述m、q、L、t0为已知量,且忽略粒子间的相互影响。求:
(1)电压U0的大小;
(2)匀强磁场的磁感应强度B;
(3)0~3t0时间内何时射入的粒子在磁场中运动的时间最短,并求出此最短时间。
某空间存在着如图甲所示足够大沿水平方向的匀强磁场。在磁场中A、B两个物块叠放在一起,置于光滑水平面上,物块A带正电,物块B不带电且表面绝缘。在t1=0时刻,水平恒力F作用在物块B上,物块A、B由静止开始做加速度相同的运动.在A、B一起向左运动的过程中,以下说法正确的是( )
A.图乙可以反映A所受洛仑兹力大小随时间t变化的关系
B.图乙可以反映A对B的摩擦力大小随时间t变化的关系
C.图乙可以反映A对B的压力大小随时间t变化的关系
D.图乙可以反映B对地面压力大小随时间t变化的关系
如图所示,一个带正电的小球沿光滑的水平绝缘桌面向右运动,速度的方向垂直于一个水平方向的匀强磁场,小球飞离桌子边缘落到地板上.设其飞行时间为t1,水平射程为s1,落地速率为v1.撤去磁场,其余条件不变时,小球飞行时间为t2,水平射程为s2,落地速率为v2,则( )
A.t1<t2 | B.s1>s2 | C.s1<s2 | D.v1=v2 |
半径为r的绝缘光滑圆环固定在竖直平面内,环上套有质量为m、带正电的珠子,空间存在水平向右的匀强电场,如图所示,珠子所受静电力是其重力的倍。将珠子从环最低位置A点静止释放,求:
(1)珠子所能获得的最大动能;
(2)最大动能位置圆环对珠子作用力大小;
(3)珠子运动到最高点B点位置。
如图所示,在坐标系xoy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xoy面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E. 一质量为、带电量为的粒子自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场,以后仅保留磁场。已知OP=d,OQ=2d,不计粒子重力。
(1)求粒子过Q点时速度的大小和方向。
(2)若磁感应强度的大小为一定值B0,粒子将以垂直y轴的方向进入第二象限,求B0;
(3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q点,且速度与第一次过Q点时相同,求该粒子相邻两次经过Q点所用的时间。
(10分)如图所示,水平方向的匀强电场场强为E,场区宽度为L,竖直方向足够长,紧挨着电场的是垂直于纸面向外的两个匀强磁场区域,其磁感应强度分别为B和2B。一个质量m,电荷量为q的带正电粒子,其重力不计,从电场的边界MN上的a点由静止释放,经电场加速后进入磁场,经过时间穿过中间磁场,进入右边磁场后能按某一路径再返回到电场的边界MN上的某一点b,途中虚线为场区的分界面。求:
(1)中间场区的宽度d;
(2)粒子从a点到b点所经历的时间;
(3)当粒子第n次返回电场的MN边界时与出发点之间的距离。
如图,xoy平面内存在着沿y轴正方向的匀强电场,一个质量为m、带电荷量为+q的粒子从坐标原点O以速度v0沿x轴正方向开始运动。当它经过图中虚线上的M(,a)点时,撤去电场,粒子继续运动一段时间后进入一个矩形匀强磁场区域(图中未画出),又从虚线上的某一位置N处沿y轴负方向运动并再次经过M点。已知磁场方向垂直xoy平面(纸面)向里,磁感应强度大小为B,不计粒子的重力。试求:
⑴电场强度的大小;
⑵N点的坐标;
⑶矩形磁场的最小面积。
如图所示,坐标空间中有场强为E的匀强电场和磁感应强度为B的匀强磁场,Y轴为两种场的分界面,图中虚线为磁场区域的右边界,现有一质量为m,电荷量为-q的带电粒子从电场中坐标位置(-L,0)处,以初速度v0沿x轴正方向开始运动,且已知 L=mv02/Eq(重力不计),试求:
使带电粒子能穿越磁场区域而不再返回电场中,磁场的宽度d 应满足的条件.
如图所示,在第二象限内有水平向右的匀强电场,电场强度为E,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等. 有一个带电粒子以初速度v0垂直x轴,从x轴上的P点进入匀强电场,恰好与y轴成45°角射出电场,再经过一段时间又恰好垂直于x轴进入下面的磁场.已知OP之间的距离为d,则带电粒子( )
A.在电场中运动的时间为 |
B.在磁场中做圆周运动的半径为 |
C.自进入磁场至第二次经过x轴所用时间为 |
D.自进入电场至在磁场中第二次经过x轴的时间为 |
如图所示,平面直角坐标系中,在第二象限内有竖直放置的两平行金属板,其中右板开有小孔;在第一象限内存在内、外半径分别为、R的半圆形区域,其圆心与小孔的连线与x轴平行,该区域内有磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里:在区域内有电场强度为E的匀强电场,方向与x轴负方向的夹角为60°。一个质量为m,带电量为-q的粒子(不计重力),从左金属板由静止开始经过加速后,进入第一象限的匀强磁场。求
(1)若两金属板间的电压为U,粒子离开金属板进入磁场时的速度是多少:
(2)若粒子在磁场中运动时,刚好不能进入的中心区域,此情形下粒子在磁场中运动的速度大小。
(3)在(2)情形下,粒子运动到的区域,它第一次在匀强电场中运动的时间。
中心均开有小孔的金属板C、D与半径为d的圆形单匝金属线圈连接,圆形框内有垂直纸面的匀强磁场,大小随时间变化的关系为B=kt(k未知且k>0),E、F为磁场边界,且与C、D板平行。D板右方分布磁场大小均为B0,方向如图所示的匀强磁场。区域Ⅰ的磁场宽度为d,区域Ⅱ的磁场宽度足够。在C板小孔附近有质量为m、电量为q的负离子由静止开始加速后,经D板小孔垂直进入磁场区域Ⅰ,不计离子重力。
(1)判断圆形线框内的磁场方向;
(2)若离子从C板出发,运动一段时间后又恰能回到C板出发点,求离子在磁场中运动的总时间;
(3)若改变圆形框内的磁感强度变化率k,离子可从距D板小孔为2d的点穿过E边界离开磁场,求圆形框内磁感强度的变化率k是多少?
试题篮
()