如图甲所示,两平行金属板长度l不超过0.2 m,两板间电压U随时间t变化的图象如图乙所示。在金属板右侧有一左边界为MN、右边无界的匀强磁场,磁感应强度B =0.01 T,方向垂直纸面向里。现有带正电的粒子连续不断地以速度v0=105m/s射入电场中,初速度方向沿两板间的中线OO’方向。磁场边界MN与中线OO’垂直。已知带电粒子的比荷q/m=108C/kg,粒子的重力和粒子之间的相互作用力均可忽略不计。
(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的。请通过计算说明这种处理能够成立的理由;
(2)设t=0.1 s时刻射人电场的带电粒子恰能从金属板边缘穿越电场射入磁场,求该带电粒子射出电场时速度的大小;
(3)对于所有经过电场射入磁场的带电粒子,设其射人磁场的入射点和从磁场射出的出射点间的距离为d,试判断d的大小是否随时间变化?若不变,证明你的结论;若变化,求出d的变化范围。
如图所示,在xOy平面中第一象限内有一点P(4,3),OP所在直线下方有垂直于纸面向里的匀强磁场,OP上方有平行于OP向上的匀强电场,电场强度E=100V/m。一质量m=1×10-6kg,电荷量q=2×10-3C带正电的粒子,从坐标原点O以初速度v=1×103m/s垂直于磁场方向射入磁场,经过P点时速度方向与OP垂直并进入电场,在经过电场中的M点(图中未标出)时的动能为P点时动能的2倍,不计粒子重力。求:
(1)磁感应强度的大小;
(2)O、M两点间的电势差;
(3)M点的坐标及粒子从O运动到M点的时间。
如图所示K与虚线MN之间是加速电场。虚线MN与PQ之间是匀强电场,虚线PQ与荧光屏之间是匀强磁场,且MN、PQ与荧光屏三者互相平行。电场和磁场的方向如图所示。图中A点与O点的连线垂直于荧光屏。一带正电的粒子由静止被加速从A点离开加速电场,速度方向垂直于偏转电场方向射入偏转电场,在离开偏转电场后进入匀强磁场,最后恰好垂直地打在图中的荧光屏上。已知电场和
磁场区域在竖直方向足够长,加速电场电压与偏转电场的场强关系为U=Ed/2,式中的d是偏转电场的宽度且为已知量,磁场的磁感应强度B与偏转电场的电场强度E和带电粒子离开加速电场的速度v0关系符合表达式v0=E/B,如图所示,试求:
(1)画出带电粒子的运动轨迹示意图,
(2)磁场的宽度L为多少?
(3)改变磁场的磁感应强度的大小,则荧光
屏是出现的亮线长度是多少?
如图所示,在坐标系xOy中,y轴右侧有一匀强电场;在第二、三象限内有一有界匀强磁场,其上、下边界无限远,右边界为y轴、左边界为平行于y轴的虚线,磁场的磁感应强度大小为B,方向垂直纸面向里。一带正电,电量为q、质量为m的粒子以某一速度自磁场左边界上的A点射入磁场区域,并从O点射出,粒子射出磁场的速度方向与x轴的夹角θ=45°,大小为v.粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的倍。粒子进入电场后,在电场力的作用下又由O点返回磁场区域,经过一段时间后再次离开磁场。已知粒子从A点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期。忽略重力的影响。求:
(1)粒子经过A点时速度的方向和A点到x轴的距离;
(2)匀强电场的大小和方向;
(3)粒子从第二次离开磁场到再次到达磁场所用的时间。
(16分) 一个质量m=0.1kg的正方形金属框总电阻R=0.5Ω,金属框放在表面绝缘且光滑的斜面顶端(金属框上边与AA′重合),自静止开始沿斜面下滑,下滑过程中穿过一段边界与斜面底边BB′平行、宽度为d的匀强磁场后滑至斜面底端(金属框下边与BB′重合),设金属框在下滑过程中的速度为v,与此对应的位移为s,那么v2—s图象如图所示,已知匀强磁场方向垂直斜面向上,g=10m/s2。
⑴根据v2—s图象所提供的信息,计算出斜面倾角θ和匀强磁场宽度d;
⑵金属框从进入磁场到穿出磁场所用的时间是多少?
⑶匀强磁场的磁感应强度多大?
一个“”形导轨PONQ,其质量为M=2.0kg,放在光滑绝缘的水平面上,处于匀强磁场中,另有一根质量为m=0.60kg的金属棒CD跨放在导轨上,CD与导轨的动摩擦因数是0.20,CD棒与ON边平行,左边靠着光滑的固定立柱a、b,匀强磁场以ab为界,左侧的磁场方向竖直向上(图中表示为垂直于纸面向外),右侧磁场方向水平向右,磁感应强度的大小都是0.80T,如图所示,已知导轨ON段长为0.50m,电阻是0.40Ω,金属棒CD的电阻是0.20Ω,其余电阻不计。导轨在水平拉力作用下由静止开始以0.20m/s2的加速度做匀加速直线运动,一直到CD中的电流达到4.0A时,导轨改做匀速直线运动.设导轨足够长,取g=10m/s2.求:
⑴导轨运动起来后,C、D两点哪点电势较高?
⑵导轨做匀速运动时,水平拉力F的大小是多少?
⑶导轨做匀加速运动的过程中,水平拉力F的最小值是多少?
⑷CD上消耗的电功率为P=0.80W时,水平拉力F做功的功率是多大?
光滑的平行金属导轨长L=2 m,两导轨间距d=0.5 m,轨道平面与水平面的夹角θ=30°,导轨上端接一阻值为R=0.6 Ω的电阻,轨道所在空间有垂直轨道平面向上的匀强磁场,磁场的磁感应强度B=1 T,如图所示.有一质量m=0.5 kg、电阻r=0.4 Ω的金属棒ab,放在导轨最上端,其余部分电阻不计.已知棒ab从轨道最上端由静止开始下滑到最底端脱离轨道的过程中,电阻R上产生的热量Q1=0.6 J,取g=10 m/s2,试求:
(1)当棒的速度v=2 m/s时,电阻R两端的电压;
(2)棒下滑到轨道最底端时速度的大小;
(3)棒下滑到轨道最底端时加速度a的大小.
如图所示,倾角=30°、宽度L=1m的足够长的U形平行光滑金属导轨固定在磁感应强度B=1T、范围充分大的匀强磁场中,磁场方向垂直导轨平面斜向上.现用一平行导轨的牵引力F,牵引一根质量m=0.2kg、电阻R=1、垂直导轨的金属棒ab,由静止沿导轨向上移动(ab棒始终与导轨接触良好且垂直,不计导轨电阻及一切摩擦)。问:
(1)若牵引力为恒力,且F=9N,求金属棒达到的稳定速度v1
(2)若牵引力功率恒为72W,求金属棒达到的稳定速度v2
(3)若金属棒受向上拉力在斜面导轨上达到某一速度时,突然撤去力,此后金属棒又前进了0.48m ,从撤力至棒速为0的过程中,金属棒发热1.12J。问撤力时棒速v3多大?
如图所示,ef、gh为水平放置的足够长的平行光滑导轨,导轨间距为L=1m,导轨左端连接一个R=2Ω的电阻,将一根质量为0.2kg的金属棒cd垂直地放置导轨上,且与导轨接触良好,导轨与金属棒的电阻均不计,整个装置放在磁感应强度为B=2T的匀强磁场中,磁场方向垂直导轨平面向下,现对金属棒施加一水平向右的拉力F,使棒从静止开始向右运动,解答以下问题。
(1)若施加的水平外力恒为F=8N,则金属棒达到的稳定速度ν1是多少?
(2)若施加的水平外力的功率恒为P=18W,则金属棒达到的稳定速度ν2是多少?
(3)若施加的水平外力的功率恒为P=18W,则从金属棒开始运动到速度 v3=2m/s的过程中电阻R产生的热量为8.6J,则该过程中所需的时间是多少?
一个“”形导轨PONQ,其质量为M="2.0" kg,放在光滑绝缘的水平面上,处于匀强磁场中,另有一根质量为m="0.60" kg的金属棒CD跨放在导轨上,CD与导轨的动摩擦因数是0.20,CD棒与ON边平行,左边靠着光滑的固定立柱a、b,匀强磁场以ab为界,左侧的磁场方向竖直向上(图中表示为垂直于纸面向外),右侧磁场方向水平向右,磁感应强度的大小都是0.80 T,如图所示。已知导轨ON段长为0.50 m,电阻是0.40 Ω,金属棒CD的电阻是0.20 Ω,其余电阻不计.导轨在水平拉力作用下由静止开始以0.20 m/s2的加速度做匀加速直线运动,一直到CD中的电流达到4.0 A时,导轨改做匀速直线运动.设导轨足够长,取g=10 m/s2。求:
⑴导轨运动起来后,C、D两点哪点电势较高?
⑵导轨做匀速运动时,水平拉力F的大小是多少?
⑶导轨做匀加速运动的过程中,水平拉力F的最小值是多少?
⑷CD上消耗的电功率为P="0.80" W时,水平拉力F做功的功率是多大?
光滑的平行金属导轨长L=2 m,两导轨间距d=0.5 m,轨道平面与水平面的夹角θ=30°,导轨上端接一阻值为R=0.6 Ω的电阻,轨道所在空间有垂直轨道平面向上的匀强磁场,磁场的磁感应强度B=1 T,如图所示.有一质量m=0.5 kg、电阻r=0.4 Ω的金属棒ab,放在导轨最上端,其余部分电阻不计.已知棒ab从轨道最上端由静止开始下滑到最底端脱离轨道的过程中,电阻R上产生的热量Q1=0.6 J,取g=10 m/s2,试求:
(1)当棒的速度v=2 m/s时,电阻R两端的电压;
(2)棒下滑到轨道最底端时速度的大小;
(3)棒下滑到轨道最底端时加速度a的大小.
如图所示,一束质量为m、电荷量为q的带正电粒子从O点由静止开始经过匀强电场加速后,均从边界AN的中点P垂直于AN和磁场方向射入磁感应强度为B=的匀强磁场中。已知匀强电场的宽度为d=R,匀强磁场由一个长为2R、宽为R的矩形区域组成,磁场方向垂直纸面向里,粒子间的相互作用和重力均不计。
(1)若加速电场加速电压为9U,求粒子在电磁场中运动的总时间;
(2)若加速电场加速电压为U,求粒子在电磁场中运动的总时间。
如图所示,在xOy平面中第一象限内有一点P(4,3),OP所在直线下方有垂直于纸面向里的匀强磁场,OP上方有平行于OP向上的匀强电场,电场强度E=100V/m。一质量m=1×10-6kg,电荷量q=2×10-3C带正电的粒子,从坐标原点O以初速度v=1×103m/s垂直于磁场方向射入磁场,经过P点时速度方向与OP垂直并进入电场,在经过电场中的M点(图中未标出)时的动能为P点时动能的2倍,不计粒子重力。求:
(1)磁感应强度的大小;
(2)O、M两点间的电势差;
(3)M点的坐标及粒子从O运动到M点的时间。
如图所示,在x轴上方有垂直于x0y平面向里的匀强磁场,磁感应强度为B。在x轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m,电荷量为-q的粒子从坐标原点沿着y轴正方向射出,射出之后,第三次到达x轴时,它与点O的距离为L,不计粒子所受重力。求:
(1)此粒子射出的速度v;
(2)运动的总路程X。
如图两根正对的平行金属直轨道MN、M´N´位于同一水平面上,两轨道间距L=0.50m.轨道的MM′端之间接一阻值R=0.40Ω的定值电阻,NN′端与两条位于竖直面内的半圆形光滑金属轨道NP、N′P′平滑连接,两半圆轨道的半径均为 R0 =0.50m.直轨道的右端处于竖直向下、磁感应强度B =0.64T的匀强磁场中,磁场区域的宽度d=0.80m,且其右边界与NN′重合.现有一质量 m =0.20kg、电阻 r =0.10Ω的导体杆ab静止在距磁场的左边界s=2.0m处.在与杆垂直的水平恒力 F =2.0N的作用下ab杆开始运动,当运动至磁场的左边界时撤去F,结果导体ab恰好能以最小速度通过半圆形轨道的最高点PP′.已知导体杆ab在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab与直轨道间的动摩擦因数 μ=0.10,轨道的电阻可忽略不计,取g=10m/s2,求:
①导体杆穿过磁场的过程中通过电阻R上的电荷量
②导体杆穿过磁场的过程中整个电路产生的焦耳热
试题篮
()