如图甲所示,水平放置的A、B两平行金属板的中央各有一小孔O1、O2,板间距离为d,开关S接1。当t=0时,在a、b两端加上如图乙中的①图线所示的电压,同时在c、d两端加上如图丙所示的电压。此时,一质量为m的带负电微粒恰好静止于两孔连线的中点P处 (P、O1、O2在同一竖直线上)。重力加速度为g,空气阻力和金属板的厚度不计。
⑴若某时刻突然在a、b两端改加如图乙中的②图线所示的电压,则微粒可达到的最高点距A板的高度为多少?
⑵试在答题卷所给的坐标中,定性画出在a、b两端改加如图乙中的②图线所示的电压之后微粒运动过程中相对于P点的重力势能Ep随时间t变化的图象(只要求画出图线,不必写出定量关系式,但必须标明各转折点的横纵坐标);
⑶若要使微粒在两板间运动一段时间后,从A板中的O1小孔射出,且射出时的动能尽可能大,问应在t=0到t=T之间的哪个时 刻把开关s从l扳到2位置?ucd的变化周期T至少为多少?
足够长的平行金属导轨MN和PK表面粗糙,与水平面之间的夹角为α,间距为L。垂直于导轨平面向上的匀强磁场的磁感应强度为B,MP间接有阻值为R的电阻,质量为m的金属杆ab垂直导轨放置,其他电阻不计。如图所示,用恒力F沿导轨平面向下拉金属杆ab,使金属杆由静止开始运动,杆运动的最大速度为vm,t s末金属杆的速度为v1,,前t s内金属杆的位移为x,(重力加速度为g)求:
(1)金属杆速度为v1时加速度的大小;
(2)整个系统在前t s内产生的热量。
(16分)如图所示,在平面直角坐标系xoy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向里的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场.一粒子源固定在x轴上坐标为(-L,0)的A点.粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上坐标为(0,2L)的C点,电子经过磁场偏转后恰好垂直通过第一象限内与x轴正方向成15°角的射线ON(已知电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用).求:
⑴匀强电场的电场强度E的大小;
⑵电子离开电场时的速度方向与y轴正方向的夹角θ;
⑶圆形磁场的最小半径Rmin.
如图,两个共轴的圆筒形金属电极,在内筒上均匀分布着平行于轴线的标号1-8的八个狭缝,内筒内半径为R,在内筒之内有平行于轴线向里的匀强磁场,磁感应强度为B。在两极间加恒定电压,使筒之间的区域内有沿半径向里的电场。不计粒子重力,整个装置在真空中,粒子碰到电极时会被电极吸收。
(1)一质量为m1,带电量为+q1的粒子从紧靠外筒且正对1号缝的S点由静止出发,进入磁场后到达的第一个狭缝是3号缝,求两电极间加的电压U是多少?
(2)另一个粒子质量为m2,带电量为+q2,也从S点由静止出发,该粒子经过一段时间后恰好又回到S点,求该粒子在磁场中运动多少时间第一次回到S点。
如图,在平面第一象限整个区域分布匀强电场,电场方向平行轴向下,在第四象限内存在有界匀强磁场,左边界为轴,右边界为的直线,磁场方向垂直纸面向外。质量为、带电量为的粒子从轴上点以初速度垂直轴射入匀强电场,在电场力作用下从轴上点以与轴正方向成45°角进入匀强磁场。已知,不计粒子重力。求:
(1)点坐标;
(2)要使粒子能再进入电场,磁感应强度的取值范围;
(3)要使粒子能第二次进入磁场,磁感应强度的取值范围。
如图15,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上。一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形。棒与导轨间动摩擦因数为m,棒左侧有两个固定于水平面的立柱。导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0。PQ左侧匀强磁场方向竖直向上,磁感应强度大小为B。在t=0时,一水平向左的拉力F垂直作用于导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a。
(1)求回路中感应电动势及感应电流随时间变化的表达式;
(2)经过多少时间拉力F达到最大值,拉力F的最大值为多少?
(3)某一过程中力F做的功为W1,导轨克服摩擦力做功为W2,求回路产生的焦耳热Q。
如图所示,S粒子源能够产生大量的质量为m、电荷量为+q的粒子(重力不计)。粒子从O1孔进入一个水平方向的加速电场(初速不计),再经小孔O2进入相互正交的匀强电场和匀强磁场区域,电场强度大小为E,磁感应强度大小为B1,方向如图。虚线PQ、MN之间存在着水平向右的匀强磁场,磁场范围足够大,磁感应强度大小为B2。一块折成直角的硬质塑料片abc(不带电,宽度、厚度都很小可以忽略不计)放置在PQ、MN之间,截面图如图,a、c两点分别位于PQ、MN上,ab=bc=L,α= 45º。粒子能沿图中虚线O2O3的延长线进入PQ、MN之间的区域。
⑴求加速电压U1;
⑵假设粒子与硬质塑料板相碰后,速度大小不变,方向变化遵守光的反射定律,那么粒子与塑料片第一次相碰后到第二次相碰前做什么运动?
⑶粒子在PQ、MN之间的区域中运动的总时间t和总路程s分别是多少?
如图所示,处于匀强磁场中的两根足够长。电阻不计的平行金属导轨相距1m,导轨平面与水平面成370角,下端连接阻值为R的电阻。匀强磁场方向与导轨平面垂直。质量为0.2kg。电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25。求:
(1)求金属棒沿导轨由静止开始下滑时的加速度大小;
(2)当金属棒下滑速度达到稳定时,电阻消耗的功率为,求该速度的大小;
(3)在上问中,若,金属棒中的电流方向到,求磁感应强度的大小与方向。(取 ,,)
如图甲所示,足够长的光滑平行金属导轨MN、PQ所在平面与水平面成30°角,两导轨的间距l=0.50m,一端接有阻值R=1.0Ω的电阻。质量m=0.10kg的金属棒ab置于导轨上,与轨道垂直,电阻r=0.25Ω。整个装置处于磁感应强度B=1.0T的匀强磁场中,磁场方向垂直于导轨平面向下。t=0时刻,对金属棒施加一平行于导轨向上的外力F,使之由静止开始沿斜面向上运动,运动过程中电路中的电流随时间t变化的关系如图乙所示。电路中其他部分电阻忽略不计,g取10m/s2,求:
(1)4.0s末金属棒ab瞬时速度的大小;
(2)4.0s末力F的瞬时功率。
下图是某装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B="0.4" T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°。A1A2在左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L="0.2" m。在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L。在小孔处装一个电子快门。起初快门开启,一旦有带正电微粒通过小孔,快门立即关闭,此后每隔T=3.0×10-3s开启一此并瞬间关闭。从S1S2之间的某一位置水平发射一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔。通过小孔的微粒与档板发生碰撞而反弹,反弹速度大小是碰前的0.5倍。
(1)经过一次反弹直接从小孔射出的微粒,其初速度v0应为多少?
(2)求上述微粒从最初水平射入磁场到第二次离开磁场的时间。(忽略微粒所受重力影响,碰撞过程无电荷转移。已知微粒的荷质比C/kg。只考虑纸面上带电微粒的运动)
如图所示,在xOy平面直角坐标系中,直角三角形MNL内存在垂直于xOy平面向里磁感应强度为B的匀强磁场,三角形的一直角边ML长为6a,落在y轴上,∠NML = 30°,其中位线OP在x轴上.电子束以相同的速度v0从y轴上-3a≤y≤0的区间垂直于y轴和磁场方向射入磁场,已知从y轴上y=-2a的点射入磁场的电子在磁场中的轨迹恰好经过点.若在直角坐标系xOy的第一象限区域内,加上方向沿y轴正方向、大小为E=Bv0的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,与x轴交点为Q.忽略电子间的相互作用,不计电子的重力.试求:
(1)电子的比荷;
(2)电子束从+y轴上射入电场的纵坐标范围;
(3)从磁场中垂直于y轴射入电场的电子打到荧光屏上距Q点的最远距离。
如图所示,电阻不计的光滑金属导轨平行放置在倾角为θ的斜面上,下端接有固定电阻和金属棒cd,它们的电阻均为.两根导轨间宽度为L,磁感应强度为B的匀强磁场垂直于导轨面向上.质量为m、电阻不计的金属棒ab垂直放置在金属导轨上,在沿斜面向上且与金属棒垂直的恒力F的作用下,沿导轨以速率v匀速上滑,而金属棒cd保持静止.以下说法正确的是
A.金属棒ab中的电流为 |
B.作用在金属棒ab上各力的合力做功为零 |
C.金属棒cd的质量为 |
D.金属棒ab克服安培力做功等于整个电路中产生的焦耳热 |
如图甲所示,电阻不计且间距L=lm的光滑平行金属导轨竖直放置,上端接一阻值R=2Ω的电阻,虚线OO′下方有垂直于导轨平面向里的匀强磁场,现将质量m="0.l" kg、电阻不计的金属杆ab从OO′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触且始终水平。已知杆ab进入磁场时的速度v0 =1m/s,下落0.3 m的过程中加速度a与下落距离h的关系图象如图乙所示,g取10 m/s2,则
A.匀强磁场的磁感应强度为1T |
B.ab杆下落0.3 m时金属杆的速度为1 m/s |
C.ab杆下落0.3 m的过程中R上产生的热量为0.2 J |
D.ab杆下落0.3 m的过程中通过R的电荷量为0.25 C |
(18分)有一个1000匝的矩形线圈,两端通过导线与平行金属板AB相连(如图所示),线圈中有垂直纸面向外的匀强磁场;已知AB板长为,板间距离为。当穿过线圈的磁通量增大且变化率为时,有一比荷为的带正电粒子以初速度从上板的边缘射入板间,并恰好从下板的边缘射出;之后沿直线MN运动,又从N点射入另一垂直纸面向外磁感应强度为的圆形匀强磁场区(图中未画出),离开圆形磁场时速度方向偏转了。不计带电粒子的重力。试求
(1)AB板间的电压
(2)的大小
(3)圆形磁场区域的最小半径
(18分)图所示为回旋加速器的示意图。它由两个铝制D型金属扁盒组成,两个D形盒正中间开有一条狭缝,两个D型盒处在匀强磁场中并接在高频交变电源上。在D1盒中心A处有离子源,它产生并发出的a粒子,经狭缝电压加速后,进入D2盒中。在磁场力的作用下运动半个圆周后,再次经狭缝电压加速。为保证粒子每次经过狭缝都被加速,设法使交变电压的周期与粒子在狭缝及磁场中运动的周期一致。如此周而复始,速度越来越 大,运动半径也越来越大,最后到达D型盒的边缘,以最大速度被导出。已知a粒子电荷量为q,质量为m,加速时电极间电压大小恒为U,磁场的磁感应强度为B,D型盒的半径为R,设 狭 缝 很 窄,粒子通过狭缝的时间可以忽略不计,设α粒子从离子源发出时的初速度为零。(不计α粒子重力)求:
(1) α粒子第一次被加速后进入D2盒中时的速度大小;
(2) α粒子被加速后获得的最大动能Ek和交变电压的频率f;
(3)α粒子在第n次由D1盒进入D2盒与紧接着第n+1次由D1盒进入D2盒位置之间的距离Δx。
试题篮
()