如图,在边长为2的正方形 中, , 分别为 与 的中点,一个三角形 沿竖直方向向上平移,在运动的过程中,点 恒在直线 上,当点 运动到线段 的中点时,点 , 恰与 , 两边的中点重合,设点 到 的距离为 ,三角形 与正方形 的公共部分的面积为 .则当 时, 的值为
A. |
或 |
B. |
或 |
C. |
|
D. |
或 |
(1)证明推断:如图(1),在正方形中,点,分别在边,上,于点,点,分别在边,上,.
①求证:;
②推断:的值为 ;
(2)类比探究:如图(2),在矩形中,为常数).将矩形沿折叠,使点落在边上的点处,得到四边形,交于点,连接交于点.试探究与之间的数量关系,并说明理由;
(3)拓展应用:在(2)的条件下,连接,当时,若,,求的长.
操作体验:如图,在矩形中,点、分别在边、上,将矩形沿直线折叠,使点恰好与点重合,点落在点处.点为直线上一动点(不与、重合),过点分别作直线、的垂线,垂足分别为点和,以、为邻边构造平行四边形.
(1)如图1,求证:;
(2)特例感知:如图2,若,,当点在线段上运动时,求平行四边形的周长;
(3)类比探究:若,.
①如图3,当点在线段的延长线上运动时,试用含、的式子表示与之间的数量关系,并证明;
②如图4,当点在线段的延长线上运动时,请直接用含、的式子表示与之间的数量关系.(不要求写证明过程)
如图,在平面直角坐标系中,矩形的边,.若不改变矩形的形状和大小,当矩形顶点在轴的正半轴上左右移动时,矩形的另一个顶点始终在轴的正半轴上随之上下移动.
(1)当时,求点的坐标;
(2)设的中点为,连接、,当四边形的面积为时,求的长;
(3)当点移动到某一位置时,点到点的距离有最大值,请直接写出最大值,并求此时的值.
如图一,在射线的一侧以为一条边作矩形,,,点是线段上一动点(不与点重合),连结,过点作的垂线交射线于点,连接.
(1)求的大小;
(2)问题探究:动点在运动的过程中,
①是否能使为等腰三角形,如果能,求出线段的长度;如果不能,请说明理由.
②的大小是否改变?若不改变,请求出的大小;若改变,请说明理由.
(3)问题解决:
如图二,当动点运动到的中点时,与的交点为,的中点为,求线段的长度.
如图,在等边中,,动点从点出发以的速度沿匀速运动.动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点、同时停止运动.设运动时间为.过点作于,连接交边于.以、为边作平行四边形.
(1)当为何值时,为直角三角形;
(2)是否存在某一时刻,使点在的平分线上?若存在,求出的值,若不存在,请说明理由;
(3)求的长;
(4)取线段的中点,连接,将沿直线翻折,得△,连接,当为何值时,的值最小?并求出最小值.
如图1,正方形和的边,在同一条直线上,且,取的中点,连接,,.
(1)试证明,并求的值.
(2)如图2,将图1中的正方形变为菱形,设,其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含的式子表示);若无变化,说明理由.
如图,在正方形中,,为对角线上一动点,连接,,过点作,交直线于点.点从点出发,沿着方向以每秒的速度运动,当点与点重合时,运动停止.设的面积为,点的运动时间为秒.
(1)求证:;
(2)求与之间关系的函数表达式,并写出自变量的取值范围;
(3)求面积的最大值.
已知:如图,在四边形中,,,,,垂直平分 .点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.过点作,交于点,过点作,分别交,于点,.连接,.设运动时间为,解答下列问题:
(1)当为何值时,点在的平分线上?
(2)设四边形的面积为,求与的函数关系式;
(3)在运动过程中,是否存在某一时刻,使四边形的面积最大?若存在,求出的值;若不存在,请说明理由;
(4)连接,,在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.
如图1,在矩形中,,,是边上一点,连接,将矩形沿折叠,顶点恰好落在边上点处,延长交的延长线于点.
(1)求线段的长;
(2)如图2,,分别是线段,上的动点(与端点不重合),且,设,.
①写出关于的函数解析式,并求出的最小值;
②是否存在这样的点,使是等腰三角形?若存在,请求出的值;若不存在,请说明理由.
如图,在正方形 中, 、 分别是 、 上的点,且 , 、 分别交 于 、 ,连接 、 ,有以下结论:
①
②当 时,
③
④存在点 、 ,使得
其中正确的个数是
A. |
1 |
B. |
2 |
C. |
3 |
D. |
4 |
如图,正方形 ,点 在边 上,且 , ,垂足为 ,且交 于点 , 与 交于点 ,延长 至 ,使 ,连接 .有如下结论:① ;② ;③ ;④ .上述结论中,所有正确结论的序号是
A. |
①② |
B. |
①③ |
C. |
①②③ |
D. |
②③④ |
在矩形中,连结,点从点出发,以每秒1个单位的速度沿着的路径运动,运动时间为(秒.过点作于点,在矩形的内部作正方形.
(1)如图,当时,
①若点在的内部,连结、,求证:;
②当时,设正方形与的重叠部分面积为,求与的函数关系式;
(2)当,时,若直线将矩形的面积分成两部分,求的值.
如图,矩形硬纸片的顶点在轴的正半轴及原点上滑动,顶点在轴的正半轴及原点上滑动,点为的中点,,.给出下列结论:①点从点出发,到点运动至点为止,点经过的路径长为;②的面积最大值为144;③当最大时,点的坐标为,.其中正确的结论是 .(填写序号)
试题篮
()