如图1,在正方形中,平分,交于点,过点作,交的延长线于点,交的延长线于点.
(1)求证:;
(2)如图2,连接、,求证:平分;
(3)如图3,连接交于点,求的值.
箭头四角形
模型规律
如图1,延长交于点,则.
因为凹四边形形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”.
模型应用
(1)直接应用:①如图2, .
②如图3,、的2等分线(即角平分线)、交于点,已知,,则 .
③如图4,、分别为、的2019等分线,2,3,,2017,.它们的交点从上到下依次为、、、、.已知,,则 度.
(2)拓展应用:如图5,在四边形中,,.是四边形内一点,且.求证:四边形是菱形.
我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于,可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.
(1)已知凸五边形的各条边都相等.
①如图1,若,求证:五边形是正五边形;
②如图2,若,请判断五边形是不是正五边形,并说明理由:
(2)判断下列命题的真假.(在括号内填写“真”或“假”
如图3,已知凸六边形的各条边都相等.
①若,则六边形是正六边形;
②若,则六边形是正六边形.
定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.
(1)如图1,在中,,是的角平分线,,分别是,上的点.
求证:四边形是邻余四边形.
(2)如图2,在的方格纸中,,在格点上,请画出一个符合条件的邻余四边形,使是邻余线,,在格点上.
(3)如图3,在(1)的条件下,取中点,连结并延长交于点,延长交于点.若为的中点,,,求邻余线的长.
如图,正方形中,,点是对角线上一点,连接,过点作,交于点,连接,交于点,将沿翻折,得到,连接,交于点,若点是边的中点,则的周长是 .
如图,在平行四边形中,点是的中点,点是边上的点,,平行四边形的面积为,由、、三点确定的圆的周长为.
(1)若的面积为30,直接写出的值;
(2)求证:平分;
(3)若,,,求的值.
如图,在正方形 中,连接 ,以点 为圆心,适当长为半径画弧,交 、 于点 , ,分别以 , 为圆心,大于 长的一半为半径画弧,两弧交于点 ,连结 并延长交 于点 ,再分别以 、 为圆心,以大于 长的一半为半径画弧,两弧交于点 , ,作直线 ,分别交 , , 于点 , , ,交 的延长线于点 ,连接 ,下列结论:① ,② ,③ ,④ .其中正确的是
A. |
①②③ |
B. |
②③④ |
C. |
①③④ |
D. |
①②④ |
在平面直角坐标系中,为原点,点,点在轴的正半轴上,.矩形的顶点,,分别在,,上,.
(Ⅰ)如图①,求点的坐标;
(Ⅱ)将矩形沿轴向右平移,得到矩形,点,,,的对应点分别为,,,.设,矩形与重叠部分的面积为.
①如图②,当矩形与重叠部分为五边形时,,分别与相交于点,,试用含有的式子表示,并直接写出的取值范围;
②当时,求的取值范围(直接写出结果即可).
在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.
(Ⅰ)如图①,当点落在边上时,求点的坐标;
(Ⅱ)如图②,当点落在线段上时,与交于点.
①求证;
②求点的坐标.
(Ⅲ)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).
综合与实践
问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形中,,是延长线上一点,且,连接,交于点,以为一边在的左下方作正方形,连接.试判断线段与的位置关系.
探究展示:勤奋小组发现,垂直平分,并展示了如下的证明方法:
证明:,.
,.
四边形是矩形,.
.(依据
,..
即是的边上的中线,
又,.(依据
垂直平分.
反思交流:
(1)①上述证明过程中的“依据1”“依据2”分别是指什么?
②试判断图1中的点是否在线段的垂直平分线上,请直接回答,不必证明;
(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接,以为一边在的左下方作正方形,发现点在线段的垂直平分线上,请你给出证明;
探索发现:
(3)如图3,连接,以为一边在的右上方作正方形,可以发现点,点都在线段的垂直平分线上,除此之外,请观察矩形和正方形的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.
已知:如图,四边形中,,,是对角线上一点,且.
(1)求证:四边形是菱形;
(2)如果,且,求证:四边形是正方形.
如图所示,梯形 中, , , , , ,点 是边 上的动点,点 是射线 上一点,射线 和射线 交于点 ,且 .
(1)求线段 的长;
(2)如果 是以 为腰的等腰三角形,求线段 的长;
(3)如果点 在边 上(不与点 、 重合),设 , ,求 关于 的函数解析式,并写出 的取值范围.
问题提出:
(1)如图1,已知,试确定一点,使得以,,,为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
(2)如图2,在矩形中,,,若要在该矩形中作出一个面积最大的,且使,求满足条件的点到点的距离;
问题解决:
(3)如图3,有一座塔,按规定,要以塔为对称中心,建一个面积尽可能大的形状为平行四边形的景区.根据实际情况,要求顶点是定点,点到塔的距离为50米,,那么,是否可以建一个满足要求的面积最大的平行四边形景区?若可以,求出满足要求的平行四边形的最大面积;若不可以,请说明理由.(塔的占地面积忽略不计)
问题提出
(1)如图①,已知直线及外一点,试在直线上确定、两点,使,并画出这个.
问题探究
(2)如图②,是边长为28的正方形的对称中心,是边上的中点,连接.试在正方形的边上确定点,使线段和将正方形分割成面积之比为的两部分.求点到点的距离.
问题解决
(3)如图③,有一个矩形花园,,.根据设计要求,点、在对角线上,且,并在四边形区域内种植一种红色花卉,在矩形内其他区域均种植一种黄色花卉.已知种植这种红色花卉每平方米需210元,种植这种黄色花卉每平方米需180元.试求按设计要求,完成这两种花卉的种植至少需费用多少元?(结果保留整数.参考数据:,
试题篮
()