如图是某居民小区年龄在20岁到45岁的居民上网情况的频率分布直方图,现已知年龄 在[30,35),[35,40),[40,45]的上网人数呈现递减的等差数列,则年龄在[35,40)的频率( )
A.0.04 |
B.0.06 |
C.0.2 |
D.0.3 |
从某学校的名男生中随机抽取名测量身高,被测学生身高全部介于和之间,将测量结果按如下方式分成八组:第一组,第二组,第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人。
(Ⅰ)求第七组的频率;
(Ⅱ)估计该校的名男生的身高的中位数以及身高在以上(含)的人数;
(Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件,事件,求
将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图,后来有1个数据模糊,无法辨认,在图中以x表示,则7个剩余分数的方差为( )
A. | B. | C.36 | D. |
某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量(单位:微克)与时间(单位:小时)之间近似满足如图所示的曲线,
(1)写出第一次服药后与之间的函数关系式;
(2)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效.问:服药多少小时开始有治疗效果?治疗效果能持续多少小时?(精确到,参考数据:)
某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元) |
4 |
2 |
3 |
5 |
销售额y(万元) |
49 |
26 |
39 |
54 |
根据上表可得回归方程=x+中的为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据﹒
x |
3 |
4 |
5 |
6 |
y |
2.5 |
m |
4 |
4.5 |
根据上表提供的数据,求出y关于x的线性回归方程,那么表中m的值为 .
从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:由下表可得回归直线方程,据此模型预报身高为的男生的体重大约为( )
身高 |
160 |
165 |
170 |
175 |
180 |
体重 |
63 |
66 |
70 |
72 |
74 |
A.69.5 B.70 C.70.5 D.71
下面四个命题中真命题的是( )
①从匀速传递的产品生产流水线上,质检员每15分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②两个随机变量相关性越强,则相关系数的绝对值越接近于1;
③在回归直线方程=0.4x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.4个单位;
④对分类变量X与Y的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.
A.①④ | B.②④ | C.①③ | D.②③ |
根据如下样本数据
x |
3 |
4 |
5 |
6 |
7 |
y |
4.0 |
2.5 |
0.5 |
0.5 |
2.0 |
得到的回归方程为.若,则的值为
A. B. C. D.
根据如下样本数据:
x |
3 |
4 |
5 |
6 |
7 |
8 |
y |
4 |
2.5 |
0.5 |
x |
3 |
4 |
5 |
6 |
7 |
8 |
y |
4 |
2.5 |
-0.5 |
0.5 |
-2 |
-3 |
得到的回归方程为,则( )
A. B.
C. D.
已知变量x与y正相关,且由观测数据算得样本平均数线性回归方程=3,=3.5,则由
该观测数据算得的线性回归方程可能是( )
A.=-2x+9.5 | B.=2x-2.4 |
C.=0.4x+2.3 | D.=-0.3x+4.4 |
某商场在今年端午节的促销活动中,对6月2日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为( )
A.8万元 | B.10万元 |
C.12万元 | D.15万元 |
试题篮
()