某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm、170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.
调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单元:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.254x+0.321.由回归直线方程可知,家庭年收入每年增加1万元,年饮食支出平均增加 万元.
为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
总计 |
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
总计 |
30 |
20 |
50 |
则在犯错误的概率不超过 的前提下认为喜爱打篮球与性别有关(请用百分数表示).
附:χ2=
P(χ2≥x0) |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
x0 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:
时间x |
1 |
2 |
3 |
4 |
5 |
命中率y |
0.4 |
0.5 |
0.6 |
0.6 |
0.4 |
小李这5天的平均投篮命中率为 ;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 .
某产品的广告费用x与销售额y的统计数据如下表:
广告费用x(万元) |
3 |
4 |
5 |
6 |
销售额y(万元) |
25 |
30 |
40 |
45 |
根据上表可得回归方程=x+中的为7.据此模型预报广告费用为10万元时销售额为________(万元).
某饮料店的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间有下列数据:
x |
-2 |
-1 |
0 |
1 |
2 |
y |
5 |
4 |
2 |
2 |
1 |
甲、乙、丙三位同学对上述数据进行了研究,分别得到了x与y之间的三个线性回归方程:①;②;③,④,其中正确方程的序号是__________.
某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人的一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”。对此利用2×2列联表计算得χ2≈3.918,经查对临界值表知P(χ2≥3.841)≈0.05。对此四名同学做出了如下的判断:
①有95%的把握认为“这种血清能起到预防感冒的作用”;②如果某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%; ④这种血清预防感冒的有效率为5%;
其中判断正确的序号是 。
某医疗研究所为了检验某种血清预防感冒的作用,把名使用血清的人与另外名未用血清的人一年中的感冒记录作比较,提出假设:“这种血清不能起到预防感冒的作用”,利用列联表计算得,经查对临界值表知.对此,四名同学做出了以下的判断:
:有的把握认为“这种血清能起到预防感冒的作用”
:若某人未使用该血清,那么他在一年中有的可能性得感冒
:这种血清预防感冒的有效率为
:这种血清预防感冒的有效率为
则下列结论中,正确结论的序号是
① ; ②; ③; ④
已知的取值如下表所示:
x |
0 |
1 |
3 |
4 |
y |
2.2 |
4.3 |
4.8 |
6.7 |
从散点图分析,与线性相关,且,则_______________
.假设关于某设备的使用年限x和所支出的维修费用 y(万元),有如下的统计资料:
x |
2 |
3 |
4 |
5 |
6 |
y |
2.2 |
3.8 |
5.5 |
6.5 |
7. 0 |
若由资料可知y对x呈线性相关关系,且线性回归方程为,其中已知,请估计使用年限为20年时,维修费用约为_________.
对一些城市进行职工人均工资水平x(千元)与居民人均消费水平y(元)统计调查后知,y与x具有相关关系,满足回归方程。若某被调查城市居民人均消费水平为7.675(千元),则可以估计该城市人均消费额占人均工资收入的百分比约为
%(保留两个有效数字)
已知与之间的部分对应关系如下表:
11 |
12 |
13 |
14 |
15 |
… |
|
… |
则和可能满足的一个关系式是 .
试题篮
()