优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 圆锥曲线综合
高中数学

已知抛物线方程 y 2 = 4 x F 为焦点, P 为抛物线准线上一点, Q 为线段 PF 与抛物线的交点,定义: d ( P ) = | PF | | FQ |

(1)当 P ( - 1 , - 8 3 ) 时,求 d ( P )

(2)证明:存在常数 a ,使得 2 d ( P ) = | PF | + a

(3) P 1 P 2 P 3 为抛物线准线上三点,且 | P 1 P 2 | = | P 2 P 3 | ,判断 d ( P 1 ) + d ( P 3 ) 2 d ( P 2 ) 的关系.

来源:2019年全国统一高考数学试卷(春季高考上海卷)
  • 题型:未知
  • 难度:未知

设椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左焦点为 F ,上顶点为 B .已知椭圆的短轴长为4,离心率为 5 5

(Ⅰ)求椭圆的方程;

(Ⅱ)设点 P 在椭圆上,且异于椭圆的上、下顶点,点 M 为直线 PB x 轴的交点,点 N y 轴的负半轴上.若 | ON | = | OF | O 为原点),且 OP MN ,求直线 PB 的斜率.

来源:2019年全国统一高考数学试卷(天津卷)
  • 题型:未知
  • 难度:未知

已知抛物线 y 2 = 4 x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2 a 2 - y 2 b 2 = 1 ( a > 0 , b > 0 ) 的两条渐近线分别交于点 和点 ,且 | AB | = 4 | OF | 为原点),则双曲线的离心率为( )

A.

2

B.

3

C.

2

D.

5

来源:2019年全国统一高考数学试卷(天津卷)
  • 题型:未知
  • 难度:未知

已知椭圆 C : x 2 a 2 + y 2 b 2 = 1 的右焦点为 ( 1 , 0 ) ,且经过点 A ( 0 , 1 )

(Ⅰ)求椭圆 C的方程;

(Ⅱ)设 O为原点,直线 l : y = kx + t ( t ± 1 ) 与椭圆 C交于两个不同点 PQ,直线 AP x轴交于点 M,直线 AQ x轴交于点 N,若 | OM | · | ON | = 2 ,求证:直线 l经过定点.

来源:2019年全国统一高考数学试卷(北京卷)
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,椭圆 E x 2 a 2 + y 2 b 2 = 1 a b 0 的离心率为 2 2 ,焦距为2.

(Ⅰ)求椭圆E的方程.

(Ⅱ)如图,该直线 l y = k 1 x 3 2 交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为 k 2 , 且看 k 1 k 2 = 2 4 ,M是线段OC延长线上一点,且 | MC | | AB | = 2 3 ,⊙M的半径为 | MC | ,OS,OT是⊙M的两条切线,切点分别为S,T,求 SOT 的最大值,并求取得最大值时直线l的斜率.

image.png

来源:2017年全国统一高考数学试卷(山东卷)
  • 题型:未知
  • 难度:未知

高中数学圆锥曲线综合试题