已知两个不同的平面和两条不重合的直线,有下列四个命题:
①若//,,则;
②若,,则//;
③若//,,则;
④若//,α ∩ β =" n" ,则//.
其中正确命题的个数是
A.1个 | B.2个 | C.3个 | D.4个 |
如图,已知平面ABC,AB=AC=3,,, 点E,F分别是BC, 的中点.
(I)求证:EF 平面 ;
(II)求证:平面平面.
(III)求直线 与平面所成角的大小.
如图,是正方体的棱的中点,给出下列命题
①过点有且只有一条直线与直线,都相交;
②过点有且只有一条直线与直线,都垂直;
③过点有且只有一个平面与直线,都相交;
④过点有且只有一个平面与直线,都平行.其中真命题是:
A.①②③ | B.①②④ | C.①③④ | D.②③④ |
已知两条不重合的直线m、n和两个不重合的平面、,有下列命题:
①若m⊥n,m⊥,则n∥;
②若m⊥,n⊥,m∥n,则∥;
③若m、n是两条异面直线,m,n,m∥,n∥,则∥;
④若⊥,∩=m,n,n⊥m,则n⊥.其中正确命题的个数是( )
A.1 | B.2 | C.3 | D.4 |
如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:(1)SG⊥平面EFG;(2)SD⊥平面EFG;(3)GF⊥平面SEF;(4)EF⊥平面GSD;(5)GD⊥平面SEF.正确的是( )
A.(1)和(3) | B.(2)和(5) |
C.(1)和(4) | D.(2)和(4) |
在中,,斜边.以直线为轴旋转得到,且二面角是直二面角,动点在斜边上。
(1)求证:平面平面;
(2)当时,求异面直线与所成角的正切值;
(3)求与平面所成最大角的正切值.
如图,三棱柱中,侧棱垂直底面,是棱的中点.
(1)证明:平面⊥平面;
(2)平面分此棱柱为两部分,求这两部分体积的比.
如图,在三棱锥中,已知是正三角形,平面,,为的中点,在棱上,且,
(1)求证:平面;
(2)若为的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由;
如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.
(Ⅰ)求证:MN∥平面ABB1A1;
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.
如图(1),在三角形ABC中,,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.
(1)求证:平面CMN;
(2)求点M到平面CAN的距离.
试题篮
()