优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用
高中数学

已知两个不同的平面和两条不重合的直线,有下列四个命题:
①若//,则;      
②若,则//
③若//,则;       
④若//,α ∩ β =" n" ,则//
其中正确命题的个数是

A.1个 B.2个 C.3个 D.4个
  • 题型:未知
  • 难度:未知

如图,已知平面ABC,AB=AC=3,,, 点E,F分别是BC, 的中点.

(I)求证:EF 平面 ;
(II)求证:平面平面
(III)求直线 与平面所成角的大小.

  • 题型:未知
  • 难度:未知

如图,是正方体的棱的中点,给出下列命题
①过点有且只有一条直线与直线都相交;
②过点有且只有一条直线与直线都垂直;
③过点有且只有一个平面与直线都相交;
④过点有且只有一个平面与直线都平行.其中真命题是:

A.①②③ B.①②④ C.①③④ D.②③④
  • 题型:未知
  • 难度:未知

已知两条不重合的直线m、n和两个不重合的平面,有下列命题:
①若m⊥n,m⊥,则n∥;  
②若m⊥,n⊥,m∥n,则
③若m、n是两条异面直线,m,n,m∥,n∥,则
④若=m,n,n⊥m,则n⊥.其中正确命题的个数是(  )

A.1 B.2 C.3 D.4
  • 题型:未知
  • 难度:未知

如图,在正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现沿SE,SF及EF把这个正方形折成一个几何体,使G1,G2,G3三点重合于点G,这样,下列五个结论:(1)SG⊥平面EFG;(2)SD⊥平面EFG;(3)GF⊥平面SEF;(4)EF⊥平面GSD;(5)GD⊥平面SEF.正确的是(    )

A.(1)和(3) B.(2)和(5)
C.(1)和(4) D.(2)和(4)
  • 题型:未知
  • 难度:未知

中,,斜边以直线为轴旋转得到,且二面角是直二面角,动点在斜边上。

(1)求证:平面平面
(2)当时,求异面直线所成角的正切值;
(3)求与平面所成最大角的正切值.

  • 题型:未知
  • 难度:未知

如图,三棱柱中,侧棱垂直底面,是棱的中点.

(1)证明:平面⊥平面
(2)平面分此棱柱为两部分,求这两部分体积的比.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,已知是正三角形,平面的中点,在棱上,且

(1)求证:平面
(2)若的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由;

  • 题型:未知
  • 难度:未知

如图,所在的平面,是圆的直径,是圆上的一点,分别是点上的射影,给出下列结论:

;②;③;④
其中正确命题的序号是      

  • 题型:未知
  • 难度:未知

已知是两个不同的平面,是两条不同的直线,则下列命题中正确的是(   )

A.若,则
B.若,则
C.若,则
D.若,则
  • 题型:未知
  • 难度:未知

如图,直三棱柱ABC﹣A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分别为AC,B1C1的中点.

(Ⅰ)求证:MN∥平面ABB1A1
(Ⅱ)线段CC1上是否存在点Q,使A1B⊥平面MNQ?说明理由.

  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是边长为2的菱形,.已知

(Ⅰ)证明:
(Ⅱ)求三棱锥的体积.

  • 题型:未知
  • 难度:未知

如图(1),在三角形ABC中,,点O、M、N分别为线段的中点,将ABO和MNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.

(1)求证:平面CMN;
(2)求点M到平面CAN的距离.

  • 题型:未知
  • 难度:未知

如图,在三棱锥中,底面,且,点的中点,且交于点

(1)求证:平面
(2)当时,求三棱锥的体积.

  • 题型:未知
  • 难度:未知

在等腰梯形中,的中点,将梯形旋转90°,得到梯形(如图).

(1)求证:
(2)求二面角的余弦值.

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题