在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面
ABCD,AE⊥BD,CB=CD=CF=1,
(1)求证:BD⊥平面AED;
(2)求B到平面FDC的距离.
如图,四边形ABCD为正方形,PD⊥平面ABCD,,AF⊥PC于点F,FE∥CD交PD于点E.
(1)证明:CF⊥平面ADF;
(2)若,证明平面
如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.
(1)求证:平面MOE∥平面PAC.
(2)求证:平面PAC⊥平面PCB.
(3)设二面角M—BP—C的大小为θ,求cos θ的值.
(本小题满分14分)如图,在四面体中,,点是的中点,点在线段上,且.
(1)若∥平面,求实数的值;
(2)求证:平面平面.
如图,直三棱柱中,、分别是棱、的中点,点在棱上,已知,,.
(1)求证:平面;
(2)设点在棱上,当为何值时,平面平面?
(本小题满分12分)在如图所示的几何体中,与都是边长为2的等比三角形且所在平面互相平行,四边形BCED为正方形,,O,G分别是BC,DE的中点.
(1)证明:平面ADE平面AOFG;
(2)求二面角D-AE-F的余弦值.
如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.
求证:BD⊥AA1;
若四边形是菱形,且,求四棱柱的体积.
(本小题满分13分)
如图,⊙O在平面内,AB是⊙O的直径,平面,C为圆周上不同于A、B的任意一点,M,N,Q分别是PA,PC,PB的中点.
(1)求证:平面;
(2)求证:平面平面;
(3)求证:平面.
(本小题满分14分)如图,在五面体中,四边形为正方形,,平面平面,且,,点G是EF的中点.
(Ⅰ)证明:;
(Ⅱ)若点在线段上,且,求证://平面;
(Ⅲ)已知空间中有一点O到五点的距离相等,请指出点的位置. (只需写出结论)
(本小题满分14分)
如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形,点是的中点,点是边上的任意一点.
(1)求证:;
(2)求二面角的平面角的正弦值.
如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点,.
(1)求证:;
(2)求二面角的余弦值.
试题篮
()