优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

一个几何体是由圆柱和三棱锥组合而成,点A、B、C在圆柱上底面圆O的圆周上,平面,其正视图、侧视图如图所示.

(1)求证:
(2)求锐二面角的大小.

  • 题型:未知
  • 难度:未知

如图,是直角梯形底边的中点,,将△沿折起形成四棱锥

(1)求证:平面
(2)若二面角,求二面角的正切值.

  • 题型:未知
  • 难度:未知

如图,在平行四边形中,的中点,将沿直线折起到的位置,使平面平面

(1)证明:CEPD;
(2)设分别为的中点,求直线与平面所成的角.

  • 题型:未知
  • 难度:未知

如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.

(Ⅰ)求证:DE∥面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求三棱锥B﹣PEC的体积.

  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面ABCD为菱形,且.

(1)求证:
(2)若,求点C到平面PBD的距离.

  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)求证:平面
(2)过点E作截面平面,分别交CB于F,于H,求截面的面积。

  • 题型:未知
  • 难度:未知

如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.

(1)求证:PC //平面BDE;
(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.

  • 题型:未知
  • 难度:未知

如图,三角形是边长为4的正三角形,底面,点的中点,点上,且

(1)证明:平面平面
(2)求直线和平面所成角的正弦值.

  • 题型:未知
  • 难度:未知

如图,四棱锥P—ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,点E是PB的中点,点F是EB的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:平面

  • 题型:未知
  • 难度:未知

矩形与矩形的公共边为,且平面平面,如图所示,.

(1)证明:平面
(2)求异面直线所成角的余弦值;
(3)若是棱的中点,在线段上是否存在一点,使得平面?证明你的结论.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面ABCD为菱形,,Q为AD的中点,.

(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使平面MQB.

  • 题型:未知
  • 难度:未知

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,,平面底面分别是的中点,求证:

(1)底面
(2)平面

  • 题型:未知
  • 难度:未知

如图,平面平面,四边形是边长为2的正方形,上的点,且平面

(1)求证平面
(2)设,是否存在,使二面角的余弦值为?若存在,求的值;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

已知三棱柱底面分别为的中点.

(1)求证:平面
(2)求证:平面平面

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题