优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 空间向量的应用 / 解答题
高中数学

如图在三棱锥S

(1)证明
(2)求侧面与底面所成二面角的大小;
(3)求点C到平面SAB的距离.

  • 题型:未知
  • 难度:未知

直三棱柱中,分别为的中点.
(1)求证:
(2)求异面直线所成角的余弦值.

  • 题型:未知
  • 难度:未知

如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,点M在AB上,且,E为PB的中点.

(1)求证:CE∥平面ADP;
(2)求证:平面PAD⊥平面PAB;
(3)棱AP上是否存在一点N,使得平面DMN⊥平面ABCD,若存在,求出的值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

如图,在三棱锥底面ABC,且SB=分别是SA、SC的中点.

(Ⅰ)求证:平面平面BCD;
(Ⅱ)求二面角的平面角的大小.

  • 题型:未知
  • 难度:未知

已知四棱柱的底面为正方形,分别为棱的中点.
(1)求证:直线平面
(2)已知,取线段的中点,求二面角的余弦值.

  • 题型:未知
  • 难度:未知

(本小题共14分)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=

(Ⅰ)若点M是棱PC的中点,求证:PA // 平面BMQ;
(Ⅱ)求证:平面PQB⊥平面PAD;
(Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值 .

  • 题型:未知
  • 难度:未知

如图,四棱锥中,底面为平行四边形,底面

(1)证明:平面平面
(2)若二面角,求与平面所成的正弦值.

  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,四面体中,分别的中点,

(Ⅰ)求证:AO⊥平面
(Ⅱ)求异面直线所成角的余弦值;
(Ⅲ)求点E到平面ACD的距离.

  • 题型:未知
  • 难度:未知

如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.

(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1

  • 题型:未知
  • 难度:未知

如图,菱形的边长为6,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,

(1)求证:
(2)求到平面的距离.

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面ABCD为菱形,,Q为AD的中点,.

(1)求证:平面PQB;
(2)点M在线段PC上,,试确定t的值,使平面MQB.

  • 题型:未知
  • 难度:未知

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为

  • 题型:未知
  • 难度:未知

如图,在四棱锥中,,平面底面分别是的中点,求证:

(1)底面
(2)平面

  • 题型:未知
  • 难度:未知

如图,平面平面,四边形是边长为2的正方形,上的点,且平面

(1)求证平面
(2)设,是否存在,使二面角的余弦值为?若存在,求的值;若不存在,说明理由.

  • 题型:未知
  • 难度:未知

已知三棱柱底面分别为的中点.

(1)求证:平面
(2)求证:平面平面

  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题