优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合 / 解答题
高中数学

已知方程的方程,直线
(1)求的取值范围; (2)若圆与直线交于PQ两点,且以PQ为直径的圆恰过坐标原点,求实数m的值.

  • 题型:未知
  • 难度:未知

已知分别是双曲线的左、右焦点,过斜率为的直线交双曲线的左、右两支分别于两点,过且与垂直的直线交双曲线的左、右两支分别于两点。
(1)求的取值范围;
求四边形面积的最小值。

  • 题型:未知
  • 难度:未知

以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆为 圆心、为半径。
(I) 写出直线的参数方程和圆的极坐标方程;
(Ⅱ)试判定直线和圆的位置关系。

  • 题型:未知
  • 难度:未知

如图,Δ是内接于⊙O,,直线切⊙O于点,弦相交于点
(I) 求证:Δ≌Δ
(Ⅱ)若,求

  • 题型:未知
  • 难度:未知

(本小题满分12分)求一条渐近线方程是,且过点的双曲线的标准方程,并求此双曲线的离心率.

  • 题型:未知
  • 难度:未知

已知曲线的极坐标方程为,直线的参数方程是:  .
(Ⅰ)求曲线的直角坐标方程,直线的普通方程;
(Ⅱ)求曲线与直线交与两点,求长.

  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知点,()是曲线C上的两点,点关于轴对称,直线分别交轴于点和点
(Ⅰ)用分别表示;
(Ⅱ)某同学发现,当曲线C的方程为:时,是一个定值与点的位置无关;请你试探究当曲线C的方程为:时, 的值是否也与点M、NP的位置无关;
(Ⅲ)类比(Ⅱ)的探究过程,当曲线C的方程为时,探究经加、减、乘、除的某一种运算后为定值的一个正确结论.(只要求写出你的探究结论,无须证明).

  • 题型:未知
  • 难度:未知

(本题满分14分)设点F(0,2),曲线C上任意一点M(x,y)满足以线段FM为直径的圆与x 轴相切.
(1)求曲线C的方程;
(2)设过点Q(0,-2)的直线l与曲线C交于A,B两点,问|FA|,|AB|,|FB|能否成等差数列?若能,求出直线l的方程;若不能,请说明理由.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
扇形中,半径°,在的延长线上有一动点,过点与半圆弧相切于点,且与过点所作的的垂线交于点,此时显然有CO=CD,DB=DE,问当OC多长时,直角梯形面积最小,并求出这个最小值。

  • 题型:未知
  • 难度:未知

(本小题满分14分)
设圆满足条件:(1)截y轴所得的弦长为2;(2)被x轴分成两段弧,其弧长的比为3︰1;(3)圆心到直线的距离为.求这个圆的方程.

  • 题型:未知
  • 难度:未知

(本小题满分12分)
已知点A(15,0),点P是圆上的动点,M为线段PA的中点,当点P在圆上运动时,求动点M的轨迹方程.

  • 题型:未知
  • 难度:未知

在直角坐标系中,点到两点的距离之和等于,设点的轨迹为
(1)求曲线的方程;
(2)过点作两条互相垂直的直线分别与曲线交于
①以线段为直径的圆过能否过坐标原点,若能求出此时的值,若不能说明理由;
②求四边形面积的取值范围。

来源:2009—2010学年度山东省高三理科下学期数学单元测试
  • 题型:未知
  • 难度:未知

(本小题满分12分)
F是椭圆C的左焦点,直线l为其左准线,直线lx轴交于点P,线段MN为椭圆的长轴,已知
(1)   求椭圆C的标准方程;
(2)   若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN

  • 题型:未知
  • 难度:未知

已知动点(x, y) 在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程;定点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.
(1)求曲线的方程;                  (2)求m的取值范围.

  • 题型:未知
  • 难度:未知

已知椭圆的离心率为
直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直
线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;
(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积
的最小值.

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合解答题