优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中数学试题 / 平面解析几何的产生──数与形的结合
高中数学

(本小题满分14分)
已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形。
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P。证明:为定值。
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由。

  • 题型:未知
  • 难度:未知

(坐标系与参数方程选讲)
在极坐标系中,点到直线
的距离为      

  • 题型:未知
  • 难度:未知

已知平面上两定点C1,0),D(1,0)和一定直线为该平面上一动点,作,垂足为Q,且
(1)问点在什么曲线上,并求出曲线的轨迹方程M
(2)又已知点A为抛物线上一点,直线DA与曲线M的交点B不在 轴的右侧,且点B不在轴上,并满足的最小值.

  • 题型:未知
  • 难度:未知

以下四个关于圆锥曲线的命题中:
①设AB为两个定点,k为非零常数,若,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦ABO为坐标原点,若,则动点P的轨迹为椭圆;
③抛物线的焦点坐标是
④曲线与曲线)有相同的焦点.
其中真命题的序号为____________写出所有真命题的序号.

  • 题型:未知
  • 难度:未知

如图,过点作垂直于轴的垂线交曲线于点,又过点轴的平行线交轴于点,记点关于直线的对称点为;……;依此类推.若数列的各项分别为点列的横坐标,且,则       

  • 题型:未知
  • 难度:未知

若圆与圆关于直线对称,过点的圆P轴相切,则圆心P的轨迹方程为                                                                         (   )

A. B.
C. D.
  • 题型:未知
  • 难度:未知

(本小题满分13分)
设椭圆的离心率,右焦点到直线的距离为坐标原点.
(I)求椭圆的方程;
(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直
线的距离为定值,并求弦长度的最小值.

  • 题型:未知
  • 难度:未知

从双曲线=1的左焦点F引圆x2 + y2 = 3的切线FP交双曲线右支于点P,T为切点,M为线段FP的中点,O为坐标原点,则| MO | – | MT | 等于              

  • 题型:未知
  • 难度:未知

“双曲线C的方程为 ”是“双曲线C的渐近线方程为”的(  )                                                  

A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件
  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(Ⅰ)试写出直线的直角坐标方程和曲线的参数方程;
(Ⅱ)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.

  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-1:几何证明选讲
如图所示,AB是⊙O的直径,
G为AB延长线上的一点,GCD是⊙O的割线,过点
G作AB的垂线,交AC的延长线于点E,交AD的延
长线于点F,过G作⊙O的切线,切点为H .
求证:(Ⅰ)C,D,F,E四点共圆;
(Ⅱ)GH2=GE·GF.

  • 题型:未知
  • 难度:未知

(本小题满分12分)一动圆与已知相外切,与相内切.
(Ⅰ)求动圆圆心的轨迹C;
(Ⅱ)若A(0,1),轨迹C与直线y="kx+m" (k≠0)相交于不同的两点M、N,当||=||时,求m的取值范围.

  • 题型:未知
  • 难度:未知

双曲线的离心率是2,则的最小值为

A. B. C.2 D.1
  • 题型:未知
  • 难度:未知

(本小题满分10分)选修4-1:几何证明选讲
如图所示,AB是⊙O的直径,
G为AB延长线上的一点,GCD是⊙O的割线,过点<
G作AB的垂线,交AC的延长线于点E,交AD的延
长线于点F,过G作⊙O的切线,切点为H .
求证:(Ⅰ)C,D,F,E四点共圆;
(Ⅱ)GH2=GE·GF.

  • 题型:未知
  • 难度:未知

设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线的斜率的取值范围是                

  • 题型:未知
  • 难度:未知

高中数学平面解析几何的产生──数与形的结合试题